Skip to main content
Log in

Development of the self-consistent approximation and its application to the problem of magnetoelastic resonance in an inhomogeneous medium

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Our previously proposed approximation involving both the first and second terms of the expansion of the vertex function is generalized to the system of two interacting wavefields of different physical nature. A system of self-consistent equations for the matrix Green’s function and matrix vertex function is derived. On the basis of this matrix generalization of the new self-consistent approximation, a theory of magnetoelastic resonance is developed for a ferromagnetic model, where the magnetoelastic coupling parameter ε(x) is inhomogeneous. Equations for magnetoelastic resonance are analyzed for one-dimensional inhomogeneities of the coupling parameter. The diagonal and off-diagonal elements of the matrix Green’s function of the system of coupled spin and elastic waves are calculated with the change in the ratio between the average value ε and rms fluctuation Δε of the coupling parameter between waves from the homogeneous case (ε ≠ 0, Δε = 0) to the extremely randomized case (ε = 0, Δε ≠ 0) at various correlation wavenumbers of inhomogeneities k c. For the limiting case of infinite correlation radius (k c = 0), in addition to approximate expressions, exact analytical expressions corresponding to the summation of all diagrams of elements of the matrix Green’s function are obtained. The results calculated for an arbitrary k c value in the new self-consistent approximation are compared to the results obtained in the standard self-consistent approximation, where only the first term of the expansion of the vertex function is taken into account. It is shown that the new approximation corrects disadvantages of the Green’s functions calculated in the standard approximation such as the dome shape of resonances and bends on the sides of resonance peaks. The appearance of a fine structure of the spectrum in the form of a narrow resonance on the Green’s function of spin waves and a narrow antiresonance on the Green’s function of elastic waves, which was previously predicted in the standard self-consistent approximation, is confirmed. With an increase in the parameter k c, the Green’s functions calculated in the standard and new approximations approach each other and almost coincide with each other at k c/k ≥ 0.5. At the same time, the results of this work indicate that the new self-consistent approximation has a certain advantage for studying the problems of stochastic radiophysics in media with long-wavelength inhomogeneities (small k c values), because it describes both the shape and width of peaks much better than the standard approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Migdal, Sov. Phys. JETP 7, 996 (1958).

    MathSciNet  Google Scholar 

  2. R. H. Kraichnan, J. Math. Phys. 2, 124 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Bruus and K. Flensberg, Introduction to Many-Body Quantum Theory in Condensed Matter Physics (Ørsted Lab., Niels Bohr Inst., Copenhagen, Denmark, 2002).

    Google Scholar 

  4. J. Cai, X. L. Lei, and L. M. Xie, Phys. Rev. B 39, 11618 (1989).

    Article  ADS  Google Scholar 

  5. V. N. Kostur and B. Mitrovic, Phys. Rev. B 50, 12774 (1994).

    Article  ADS  Google Scholar 

  6. C. Grimaldi, L. Pietronero, and S. Strässler, Phys. Rev. Lett. 75, 1158 (1995).

    Article  ADS  Google Scholar 

  7. Y. Takada and T. Higuchi, Phys. Rev. B 52, 12720 (1995).

    Article  ADS  Google Scholar 

  8. O. V. Danylenko, O. V. Dolgov, and V. V. Losyakov, Phys. Lett. A 230, 79 (1997).

    Article  ADS  Google Scholar 

  9. G. A. Ummarino and R. S. Gonnelli, Phys. Rev. B 56, R14279 (1997).

    Article  ADS  Google Scholar 

  10. F. Cosenza, L. de Cesare, and M. Fusco Girard, Phys. Rev. B 59, 3349 (1999).

    Article  ADS  Google Scholar 

  11. O. V. Danylenko and O. V. Dolgov, Phys. Rev. B 63, 094506 (2001).

    Article  ADS  Google Scholar 

  12. J. P. Hague and N. d’Ambrumenil, J. Low Temp. Phys.151, 1149 (2008).

    Article  ADS  Google Scholar 

  13. J. Bauer, J. E. Han, and O. Gunnarsson, Phys. Rev. B 84, 184531 (2011).

    Article  ADS  Google Scholar 

  14. V. A. Ignatchenko and D. S. Polukhin, J. Phys. A: Math. Theor. 49, 095004 (2016).

    Article  ADS  Google Scholar 

  15. V. A. Ignatchenko, D. S. Polukhin, and D. S. Tsikalov, J. Magn. Magn. Mater. 440, 83 (2017); dx. doi. org/10.1016.j.jmmm.2016.12.058.

    Article  ADS  Google Scholar 

  16. A. I. Akhiezer, in Proceedings of the Conference on Physics of Magnetic Phenomena, Moscow, May 23–31, 1956 (Metallurgizdat, Sverdlovsk, 1956).

    Google Scholar 

  17. E. A. Turov and Yu. P. Irkhin, Fiz. Met. Metalloved. 3, 15 (1956).

    Google Scholar 

  18. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Sov. Phys. JETP 8, 157 (1958).

    Google Scholar 

  19. C. Kittel, Phys. Rev. 110, 835 (1958).

    ADS  MathSciNet  Google Scholar 

  20. V. A. Ignatchenko and D. S. Polukhin, Solid State Phenom. 190, 51 (2012).

    Article  Google Scholar 

  21. V. A. Ignatchenko and D. S. Polukhin, J. Exp. Theor. Phys. 116, 206 (2013).

    Article  ADS  Google Scholar 

  22. V. A. Ignatchenko and D. S. Polukhin, J. Exp. Theor. Phys. 117, 846 (2013).

    Article  ADS  Google Scholar 

  23. V. A. Ignatchenko and D. S. Polukhin, Solid State Phenom. 215, 105 (2014).

    Article  Google Scholar 

  24. R. C. Bourret, Nuovo Cim. 26, 1 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics, Pt. 2: Chaotic Fields (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  26. M. V. Sadovskii, Diagrammatics, Lectures on Selected Problems on Condensed State Theory, 2nd ed. (Inst. Elektrofiz. UrO RAN, Yekaterinburg, 2005; World Scientific, Singapore, 2006).

    Book  MATH  Google Scholar 

  27. V. A. Ignatchenko, D.S. Polukhin, Phys. Proc. 86, 117 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ignatchenko.

Additional information

Original Russian Text © V.A. Ignatchenko, D.S. Polukhin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 1, pp. 110–124.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatchenko, V.A., Polukhin, D.S. Development of the self-consistent approximation and its application to the problem of magnetoelastic resonance in an inhomogeneous medium. J. Exp. Theor. Phys. 125, 91–103 (2017). https://doi.org/10.1134/S1063776117060115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117060115

Navigation