Skip to main content
Log in

Nanocell with a pressure-controlled Rb atomic vapor column thickness: Critical influence of the thickness on optical processes

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0–1 atm, the NC thickness is smoothly varied in the range L = 140–1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Budker, W. Gawlik, D. Kimball, S. R. Rochester, V. V. Yaschuk, and A. Weis, Rev. Mod. Phys. 74, 1153 (2002).

    Article  ADS  Google Scholar 

  2. E. B. Aleksandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States (Springer, Berlin, 1993).

  3. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford Univ. Press, Oxford, 2010).

  4. T. A. Vartanyan and D. L. Lin, Phys. Rev. A 51, 1959 (1995).

    Article  ADS  Google Scholar 

  5. B. Zambon and G. Neinhuis, Opt. Comm. 143, 308 (1997).

    Article  ADS  Google Scholar 

  6. S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, Phys. Rev. A 57, R3169 (1998).

    Article  ADS  Google Scholar 

  7. G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, J. Opt. Soc. Am. B 20, 793 (2003).

    Article  ADS  Google Scholar 

  8. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).

    Article  ADS  Google Scholar 

  9. D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, Phys. Rev. A 69, 065802 (2004).

    Article  ADS  Google Scholar 

  10. C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, Phys. Rev. A 76, 013837 (2007).

    Article  ADS  Google Scholar 

  11. A. Sargsyan, D. Sarkisyan, and A. Papoyan, Phys. Rev. A 73, 033803 (2006).

    Article  ADS  Google Scholar 

  12. A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, Yu. Malakyan, and D. Sarkisyan, JETP Lett. 102, 487 (2015).

    Article  ADS  Google Scholar 

  13. A. Sargsyan, E. Klinger, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, JETP Lett. 104, 224 (2016).

    Article  ADS  Google Scholar 

  14. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).

    Article  ADS  Google Scholar 

  15. A. Sargsyan, G. Hakhumyan, R. Mirzoyan, and D. Sarkisyan, JETP Lett. 98, 441 (2013).

    Article  ADS  Google Scholar 

  16. S. Cartaleva, S. Saltier, A. Sargsyan, D. Sarkisyan, D. Slavov, P. Todorov, and K. Vaseva, J. Opt. Soc. Am. B 26, 1999 (2009).

    Article  ADS  Google Scholar 

  17. A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, and D. Sarkisyan, J. Phys. B: At., Mol. Opt. Phys. 49, 075001 (2016).

    Article  ADS  Google Scholar 

  18. W. T. Silfvast, Laser Fundamentals (Cambridge Univ. Press, Cambridge, 2005).

  19. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, New York, 2004).

  20. O. Galstyan, H. Lee, A. Babajanyan, A. Hakhoumian, B. Friedman, and K. Lee, J. Appl. Phys. 117, 163914 (2015).

    Article  ADS  Google Scholar 

  21. W. Happer, Rev. Mod. Phys. 44, 169 (1972).

    Article  ADS  Google Scholar 

  22. A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, and D. Sarkisyan, J. Exp. Theor. Phys. 123, 395 (2016).

    Article  ADS  Google Scholar 

  23. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, Phys. Rev. Lett. 83, 5467 (1999).

    Article  ADS  Google Scholar 

  24. D. Bloch and M. Ducloy, Adv. At. Mol. Opt. Phys. 50, 91 (2005).

    Article  ADS  Google Scholar 

  25. J. Keaveney, A. Sargsyan, U. Krohn, D. Sarkisyan, I. G. Hughes, and C. S. Adams, Phys. Rev. Lett. 108, 173601 (2012).

    Article  ADS  Google Scholar 

  26. D. Sarkisyan, A. Sargsyan, J. Keaveney, and C. S. Adams, J. Exp. Theor. Phys. 119, 8 (2014).

    Article  ADS  Google Scholar 

  27. J.-M. Hartmann, X. Landsheere, C. Boulet, D. Sarkisyan, A. S. Sarkisyan, C. Leroy, and E. Pangui, Phys. Rev. A 93, 012516 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sargsyan.

Additional information

Original Russian Text © A. Sargsyan, A. Amiryan, S. Cartaleva, D. Sarkisyan, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 1, pp. 54–61.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Amiryan, A., Cartaleva, S. et al. Nanocell with a pressure-controlled Rb atomic vapor column thickness: Critical influence of the thickness on optical processes. J. Exp. Theor. Phys. 125, 43–49 (2017). https://doi.org/10.1134/S1063776117060036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117060036

Navigation