Skip to main content
Log in

Conductance distribution near the Anderson transition

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using a modification of the Shapiro approach, we introduce the two-parameter family of conductance distributions W(g), defined by simple differential equations, which are in the one-to-one correspondence with conductance distributions for quasi-one-dimensional systems of size L d–1 × L z , characterizing by parameters L/ξ and L z /L (ξ is the correlation length, d is the dimension of space). This family contains the Gaussian and log-normal distributions, typical for the metallic and localized phases. For a certain choice of parameters, we reproduce the results for the cumulants of conductance in the space dimension d = 2 + ϵ obtained in the framework of the σ-model approach. The universal property of distributions is existence of two asymptotic regimes, log-normal for small g and exponential for large g. In the metallic phase they refer to remote tails, in the critical region they determine practically all distribution, in the localized phase the former asymptotics forces out the latter. A singularity at g = 1, discovered in numerical experiments, is admissible in the framework of their calculational scheme, but related with a deficient definition of conductance. Apart of this singularity, the critical distribution for d = 3 is well described by the present theory. One-parameter scaling for the whole distribution takes place under condition, that two independent parameters characterizing this distribution are functions of the ratio L/ξ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Al’tshuler, JETP Lett. 41, 648 (1985)

    ADS  Google Scholar 

  2. B. L. Al’tshuler and D. E. Khmel’nitskii, JETP Lett. 42, 359 (1985).

    ADS  Google Scholar 

  3. P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985)

    Article  ADS  Google Scholar 

  4. P. A. Lee, A. D. Stone, and Y. Fukuyama, Phys. Rev. B 35, 1039 (1987).

    Article  ADS  Google Scholar 

  5. B. L. Al’tshuler, V. E. Kravtsov, and I. V. Lerner, Sov. Phys. JETP 64, 1352 (1986).

    Google Scholar 

  6. B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, Phys. Lett. A 134, 488 (1989).

    Article  ADS  Google Scholar 

  7. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  8. B. Shapiro, Phys. Rev. B 34, 4394 (1986).

    Article  ADS  Google Scholar 

  9. B. Shapiro, Phil. Mag. 56, 1031 (1987).

    Article  Google Scholar 

  10. B. Shapiro, Phys. Rev. Lett. 65, 1510 (1990).

    Article  ADS  Google Scholar 

  11. I. M. Suslov, Sov. Phys. JETP 65, 806 (1987).

    Google Scholar 

  12. M. Rühländer and C. M. Soukoulis, Phys. B: Condens. Matter 296, 32 (2001).

    Article  ADS  Google Scholar 

  13. P. Markoš, Acta Phys. Slov. 56, 561 (2006).

    ADS  Google Scholar 

  14. K. A. Muttalib, P. Wölfle, A. Garcia-Martin, and V. A. Gopar, Europhys. Lett. 61, 95 (2003).

    Article  ADS  Google Scholar 

  15. K. Slevin, T. Ohtsuki, and P. Markoš, Phys. Rev. B 67, 155106 (2003).

    Article  ADS  Google Scholar 

  16. K. Slevin, T. Ohtsuki, and P. Markoš, Phys. Rev. Lett. 86, 3594 (2001).

    Article  ADS  Google Scholar 

  17. V. I. Mel’nikov, Sov. Phys. Solid State 23, 444 (1981).

    Google Scholar 

  18. N. Kumar, Phys. Rev. B 31, 5513 (1985).

    Article  ADS  Google Scholar 

  19. P. Mello, Phys. Rev. B 35, 1082 (1987).

    Article  ADS  Google Scholar 

  20. A. A. Abrikosov, Solid State Commun. 37, 997 (1981).

    Article  ADS  Google Scholar 

  21. K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).

    Article  ADS  Google Scholar 

  22. Sh. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, MA, 1976).

    Google Scholar 

  23. I. M. Suslov, J. Exp. Theor. Phys. 115, 897 (2012).

    Article  ADS  Google Scholar 

  24. D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982).

    Article  ADS  Google Scholar 

  25. I. M. Lifshits and V. Ya. Kirpichenkov, Sov. Phys. JETP 50, 499 (1979).

    ADS  Google Scholar 

  26. B. Shapiro and E. Abrahams, Phys. Rev. B 24, 4889 (1981).

    Article  ADS  Google Scholar 

  27. I. M. Suslov, J. Exp. Theor. Phys. 113, 619 (2011), arXiv:1506.06128.

    Article  ADS  Google Scholar 

  28. A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002), Sec. 2.3.

    Article  ADS  MathSciNet  Google Scholar 

  29. P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Philos. Mag. 21, 863 (1970).

    Article  MathSciNet  Google Scholar 

  31. M. Kappus and F. Wegner, Z. Phys. B 45, 15 (1981)

    Article  ADS  Google Scholar 

  32. V. E. Kravtsov and V. I. Yudson, Ann. Phys. (N.Y.) 326, 1672 (2011).

    Article  ADS  Google Scholar 

  33. A. Cohen, Y. Roth, and B. Shapiro, Phys. Rev. B 38, 12125 (1988).

    Article  ADS  Google Scholar 

  34. A. D. Stone and A. Szafer, IBM J. Res. Dev. 32, 384 (1988).

    Article  Google Scholar 

  35. E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981).

    Article  ADS  Google Scholar 

  36. E. Kamke, Differentialgleichungen Losungsmethoden und Losungen (Akademische Verlagsgesellschaft, Leipzig, 1957).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Suslov.

Additional information

Original Russian Text © I.M. Suslov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 5, pp. 897–915.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslov, I.M. Conductance distribution near the Anderson transition. J. Exp. Theor. Phys. 124, 763–778 (2017). https://doi.org/10.1134/S1063776117020170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117020170

Navigation