Skip to main content
Log in

Quasi-isentropic compressibility of a strongly nonideal deuterium plasma at pressures of up to 5500 GPa: Nonideality and degeneracy effects

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report on the experimental results on the quasi-isentropic compressibility of a strongly nonideal deuterium plasma that have been obtained on setups of cylindrical and spherical geometries in the pressure range of up to P ≈ 5500 GPa. We describe the characteristics of experimental setups, as well as the methods for the diagnostics and interpretation of the experimental results. The trajectory of metal shells that compress the deuterium plasma was detected using powerful pulsed X-ray sources with a maximal electron energy of up to 60 MeV. The values of the plasma density, which varied from ρ ≈ 0.8 g/cm3 to ρ ≈ 6 g/cm3, which corresponds to pressure P ≈ 5500 GPa (55 Mbar), were determined from the measured value of the shell radius at the instant that it was stopped. The pressure of the compressed plasma was determined using gasdynamic calculations taking into account the actual characteristics of the experimental setups. We have obtained a strongly compressed deuterium plasma in which electron degeneracy effects under the conditions of strong interparticle interaction are significant. The experimental results have been compared with the theoretical models of a strongly nonideal partly degenerate plasma. We have obtained experimental confirmation of the plasma phase transition in the pressure range near 150 GPa (1.5 Mbar), which is in keeping with the conclusion concerning anomaly in the compressibility of the deuterium plasma drawn in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, R. I. Il’kaev, V. A. Arinin, et al., Phys. Rev. Lett. 99, 185001 (2007).

    Article  ADS  Google Scholar 

  2. V. E. Fortov, Springer Ser. Mater. Sci. 216, 1 (2016).

    Article  ADS  Google Scholar 

  3. V. E. Fortov, Extreme States of Matter on Earth and in the Cosmos (Springer, Berlin, 2011).

    Book  MATH  Google Scholar 

  4. V. E. Fortov and I. T. Iakubov, The Physics of Non-Ideal Plasma (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  5. V. E. Fortov, Thermodynamics and Equations of State for Matter From Ideal Gas to Quark-Gluon Plasma (Fizmatlit, Moscow, 2012; World Scientific, Singapore, 2016).

    Book  MATH  Google Scholar 

  6. V. E. Fortov, V. Ya. Ternovoi, M. V. Zhernokletov, M. A. Mochalov, A. L. Mikhailov, A. S. Filimonov, A. A. Pyalling, V. B. Mintsev, V. K. Gryaznov, and I. L. Iosilevski, J. Exp. Theor. Phys. 97, 259 (2003).

    Article  ADS  Google Scholar 

  7. S. G. Grishechkin, S. K. Gruzdev, V. K. Gryaznov, M. V. Zhernokletov, R. I. Il’kaev, I. L. Iosilevskii, G. N. Kashintseva, S. I. Kirshanov, S. F. Manachkin, V. B. Mintsev, A. L. Mikhalov, A. B. Mezhevov, M. A. Mochalov, V. E. Fortov, V. V. Khrustalev, A. N. Shukin, and A. A. Yukhimchuk, JETP Lett. 80, 398 (2004).

    Article  ADS  Google Scholar 

  8. J. Eggert, S. Brygoo, P. Loubeure, et al., Phys. Rev. Lett. 100, 124503 (2008).

    Article  ADS  Google Scholar 

  9. D. G. Hicks, T. R. Rochly, P. M. Celliers, et al., Phys. Rev. B 79, 014112 (2009).

    Article  ADS  Google Scholar 

  10. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., JETP Lett. 16, 201 (1972).

    ADS  Google Scholar 

  11. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., Sov. Phys. JETP 48, 847 (1978).

    ADS  Google Scholar 

  12. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996); W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B 59, 3434 (1999).

    Article  ADS  Google Scholar 

  13. W. J. Nellis, Rep. Progr. Phys. 69, 1195 (2006).

    Article  ADS  Google Scholar 

  14. L. B. Da Silva, P. Celliers, G. W. Collins, et al., Phys. Rev. Lett. 78, 483 (1997).

    Article  ADS  Google Scholar 

  15. G. W. Collins, L. B. Da Silva, R. Celliers, et al., Science 281, 1178 (1998).

    Article  ADS  Google Scholar 

  16. M. D. Knudson and D. L. Hanson, Phys. Rev. Lett. 90, 035505 (2003).

    Article  ADS  Google Scholar 

  17. M. D. Knudson, D. L. Hanson, J. E. Bailey, et al., Phys. Rev. B 69, 144209 (2004).

    Article  ADS  Google Scholar 

  18. G. V. Boriskov, A. I. Bykov, N. I. Egorov, et al., J. Phys.: Conf. Ser. 121, 072001 (2008); Contrib. Plasma Phys. 51, 339 (2011).

    Google Scholar 

  19. R. F. Trunin, G. V. Boriskov, A. I. Bykov, A. B. Medvedev, G. V. Simakov, and A. N. Shuikin, JETP Lett. 88, 189 (2008).

    Article  ADS  Google Scholar 

  20. P. Loubeyre, S. Brygoo, J. Eggert, et al., Phys. Rev. B 86, 144115 (2012).

    Article  ADS  Google Scholar 

  21. V. P. Kopyshev, V. D. Urlin, in Shock Waves and Extreme States of Matter, Collection of Articles, Ed. by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Nauka, Moscow, 2000), p. 297 [in Russian].

  22. V. P. Kopyshev and V. V. Khrustalev, Prikl. Mekh. Tekh. Fiz. 21, 122 (1980).

    Google Scholar 

  23. A. A. Abrikosov, Astron. Zh. 31, 112 (1954).

    Google Scholar 

  24. E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  25. I. A. Adamskaya, F. V. Grigor’ev, O. L. Mikhailova, et al., Sov. Phys. JETP 66, 366 (1987).

    Google Scholar 

  26. V. D. Urlin, M. A. Mochalov, and O. L. Mikhailova, Mat. Model. 3, 42 (1991); V. D. Urlin, M. A. Mochalov, and O. L. Mikhailova, High Press. Res. 8, 595 (1992).

    MathSciNet  Google Scholar 

  27. V. D. Urlin, M. A. Mochalov, and O. L. Mikhailova, J. Exp. Theor. Phys. 84, 1145 (1997).

    Article  ADS  Google Scholar 

  28. V. A. Arinin, O. L. Mikhailova, M. A. Mochalov, and V. D. Urlin, JETP Lett. 87, 209 (2008).

    Article  ADS  Google Scholar 

  29. O. L. Mikhailova, M. A. Mochalov, A. I. Sokolova, and V. D. Urlin, High Temp. 38, 210 (2000).

    Article  Google Scholar 

  30. A. I. Pavlovskii, G. D. Kuleshov, G. V. Sklizkov, et al., Sov. Phys. Dokl. 10, 30 (1965).

    ADS  Google Scholar 

  31. A. N. Golubkov, A. A. Kononenko, and A. A. Yukhimchuk, Fusion Sci. Technol. 48, 527 (2005).

    Google Scholar 

  32. V. A. Arinin, B. I. Tkachenko, L. A. Fadeev, et al., in Proceedings of the 11th Kharitonov Thematic Readings, Ed. by A. L. Mikhailov (RFYaTs-VNIIEF, Sarov, 2009), p. 714.

  33. V. Dzyabura, M. Zaghoo, and I. F. Silvera, Proc. Nat. Acad. Sci. USA 119, 8040 (2013).

    Article  ADS  Google Scholar 

  34. M. Zaghoo, A. Salamat, and I. F. Silvera, Phys. Rev. B 93, 155128 (2016).

    Article  ADS  Google Scholar 

  35. W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 82, 195107 (2010).

    Article  ADS  Google Scholar 

  36. M. A. Morales, J. M. McMahon, C. Pierleoni, and D. M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013).

    Article  ADS  Google Scholar 

  37. M. D. Knudsen, M. P. Desjarlais, A. Becker, et al., Science 348, 1455 (2015).

    Article  ADS  Google Scholar 

  38. P. W. Debye and E. Hückel, Phyz. Z. 24, 185 (1923).

    Google Scholar 

  39. I. L. Iosilevskii and A. N. Starostin, in Encyclopedy of Low Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. 3-1, p. 327 [in Russian].

    Google Scholar 

  40. L. D. Landau and Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 14, 32 (1944).

    Google Scholar 

  41. G. E. Norman and A. N. Starostin, Teplofiz. Vys. Temp. 6, 410 (1968); Teplofiz. Vys. Temp. 8, 413 (1970).

    Google Scholar 

  42. D. Saumon, G. Chabrier, and H. M. van Horn, Astrophys. J. (Suppl.) 99, 713 (1995).

    Article  ADS  Google Scholar 

  43. D. Beule, W. Ebeling, and A. Forster, Contrib. Plasma Phys. 39, 21 (1999).

    Article  ADS  Google Scholar 

  44. D. Beule, W. Ebeling, A. Forster, et al., Phys. Rev. B 59, 14177 (1999).

    Article  ADS  Google Scholar 

  45. V. Ebeling, A. Ferster, V. Fortov, et al., Thermophysical Properties of Dense Hot Plasma (Regulyar. Khaotich. Dinamika, Izhevsk, 2007) [in Russian].

    Google Scholar 

  46. W. Ebeling, R. Redmer, H. Reinholz, and G. Repke, Contrib. Plasma Phys. 48, 670 (2008).

    Article  ADS  Google Scholar 

  47. I. Iosilevskiy, in Proceedings of the International Conference on Compact Stars in the QCD Phase Diagram CSQCD-IV, Prerow, Germany, Ed. by D. Blaschke and T. Fischer, eConfC140926 (2015), arXiv:1504.05850.

  48. I. Iosilevskiy, J. Phys.: Conf. Ser. 653, 012077 (2015).

    Google Scholar 

  49. A. A. Pyalling, High Temp. 48, 163 (2010).

    Article  Google Scholar 

  50. V. S. Filinov, V. E. Fortov, M. Bonitz, and P. R. Levashov, JETP Lett. 74, 384 (2001).

    Article  ADS  Google Scholar 

  51. S. Scandolo, Proc. Nat. Acad. Sci. USA 100, 3051 (2003).

    Article  ADS  Google Scholar 

  52. S. Bonev, B. Militzer, and G. Galli, Phys. Rev. B 69, 014101 (2004).

    Article  ADS  Google Scholar 

  53. W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 82, 195107 (2010).

    Article  ADS  Google Scholar 

  54. M. A. Morales, C. Pierleoni, E. Schwegler, and D. M. Ceperley, Proc. Nat. Acad. Sci. USA 107, 12799 (2010).

    Article  ADS  Google Scholar 

  55. V. S. Filinov, P. R. Levashov, A. V. Botsan, et al., J. Phys. A 42, 214002 (2009); P. R. Levashov, V. S. Filinov, A. Botsan, et al., J. Phys.: Conf. Ser. 121, 012012 (2008).

    Article  ADS  Google Scholar 

  56. M. A. Morales, J. M. McMahon, C. Pierleoni, and D. M. Ceperley, Phys. Rev. Lett. 110, 065702 (2013).

    Article  ADS  Google Scholar 

  57. G. Mazzola, S. Yunoki, and S. Sorella, Nature Commun. 5, 3487 (2014).

    Article  ADS  Google Scholar 

  58. A. Michels, W. de Graaff, T. Wassenaar, et al., Physica 25, 25 (1959).

    Article  ADS  Google Scholar 

  59. V. A. Arinin and B. I. Tkachenko, Pattern Recognit. Image Anal. 19, 63 (2010).

    Article  Google Scholar 

  60. A. Worthing and J. Geffner, The Treatment of Experimental Data (Wiley, New York, 1943).

    Google Scholar 

  61. S. M. Bakhrakh, S. V. Velichko, V. F. Spiridonov, et al., Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Prots., No. 4, 41 (2004).

    Google Scholar 

  62. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, S. K. Grishechkin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, and V. K. Gryaznov, JETP Lett. 92, 300 (2010).

    Article  ADS  Google Scholar 

  63. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, E. A. Pronin, and A. A. Yukhimchuk, J. Exp. Theor. Phys. 115, 614 (2012).

    Article  ADS  Google Scholar 

  64. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Raevskii, V. A. Ogorodnikov, A. A. Yukhimchuk, A. I. Davydov, N. N. Anashkin, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, N. B. Davydov, V. A. Komrakov, A. I. Logvinov, et al., J. Exp. Theor. Phys. 119, 146 (2014).

    Article  ADS  Google Scholar 

  65. Yu. P. Kuropatkin, V. D. Mironenko, V. N. Suvorov, et al., in Proceedings of the 11th IEEE Pulsed Power Conference, Baltimore, MD, USA, Jun 29–Jul 2, 1997, Ed. by G. Cooperstein and I. Vitkovitsky (IEEE, New York, 1997), p. 1669.

  66. A. O. Blikov, I. S. Kalinin, V. A. Komrakov, et al., RF Patent No. 2545289 S1, Byull. Izobret. No. 9 (2015).

    Google Scholar 

  67. O. T. Strand, D. R. Goosman, C. Martinez, et al., Rev. Sci. Instrum. 77, 083108 (2006).

    Article  ADS  Google Scholar 

  68. N. F. Gavrilov, G. G. Ivanova, V. I. Selin, and V. N. Sofronov, Vopr. At. Nauki Tekh., Ser.: Metod. Program. Chisl. Resh. Zadach Mat. Fiz., No. 3, 11 (1982).

    Google Scholar 

  69. V. N. Zubarev and A. A. Evstigneev, Fiz. Goreniya Vzryva 20, 114 (1984).

    Google Scholar 

  70. I. P. Dudoladov, V. I. Rakitin, Yu. N. Sutulov, and G. S. Telegin, Prikl. Mekh. Tekh. Fiz. 10, 148 (1969).

    Google Scholar 

  71. L. F. Gudarenko, M. V. Zhernokletov, S. I. Kirshanov, et al., Fiz. Goreniya Vzryva 40, 104 (2004).

    Google Scholar 

  72. G. I. Kerley, LASL Scientific Report LA-4776 (1972).

    Google Scholar 

  73. P. Loubeyre, R. Le Toullec, D. Hausermann, et al., Nature 383, 702 (1996).

    Article  ADS  Google Scholar 

  74. D. J. Steinberg, S. G. Cochran, and M. W. Guiuan, J. Appl. Phys. 51, 1498 (1980).

    Article  ADS  Google Scholar 

  75. B. L. Glushak and O. N. Ignatova, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Prots., No. 2, 45 (1998).

    Google Scholar 

  76. G. Johnson and W. Cook, U.S. Air Force Contract F08635-81-C-0179 (1983).

    Google Scholar 

  77. R. C. Batra, X. Zhang, and T. W. Wright, J. Appl. Mech. 62, 253 (1995).

    Article  Google Scholar 

  78. A. G. Ivanov, S. A. Novikov, and V. A. Sinitsyn, Sov. Phys. Solid State 5, 196 (1963).

    Google Scholar 

  79. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances, Ed. by R. F. Trunin (RFYaTs-VNIIEF, Sarov, 2001) [in Russian].

  80. B. L. Glushak, L. F. Gudarenko, Yu. M. Styazhkin, and V. A. Zherebtsov, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Prots., No. 1, 32 (1991).

    Google Scholar 

  81. B. A. Nadykto, A. I. Lomaikin, I. N. Pavlusha, and M. O. Shirshova, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 2, 43 (2012).

    Google Scholar 

  82. D. H. Sharp, Physica D 12, 3 (1984).

    Article  ADS  Google Scholar 

  83. A. O. Blikov, M. A. Mochalov, V. A. Ogorodnikov, and V. A. Komrakov, RF Patent No. 2471545 S1, Byull. Izobret. No. 1 (2013).

    Google Scholar 

  84. A. Becker, N. Nettelmann, B. Holst, and R. Redmer, Phys. Rev. B 88, 045122 (2013).

    Article  ADS  Google Scholar 

  85. A. Chentsov and P. Levashov, Contrib. Plasma Phys. 52, 33 (2012).

    Article  ADS  Google Scholar 

  86. V. Gryaznov and I. Iosilevskiy, J. Phys. A 42, 214007 (2009).

    Article  ADS  Google Scholar 

  87. V. Gryaznov, I. Iosilevskiy, and V. Fortov, Contrib. Plasma Phys. 50, 77 (2010).

    Article  ADS  Google Scholar 

  88. V. K. Gryaznov, I. L. Iosilevskiy, and V. E. Fortov, Plasma Phys. Control. Fusion 58, 014012 (2015).

    Article  ADS  Google Scholar 

  89. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, Prikl. Mat. Teor. Fiz. 3, 70 (1973).

    Google Scholar 

  90. V. K. Gryaznov, I. L. Iosilevskii, Yu. G. Krasnikov, et al., Thermophysical Properties of Working Media of Gas-Phase Nuclear Reactor, Ed. by V. M. Ievlev (Atomizdat, Moscow, 1980) [in Russian].

  91. V. Gryaznov, S. Ayukov, V. Baturin, et al., J. Phys. A 39, 4459 (2006).

    Article  ADS  Google Scholar 

  92. V. K. Gryaznov, I. L. Iosilevskiy, V. E. Fortov, et al., Contrib. Plasma Phys. 53, 392 (2013).

    Article  ADS  Google Scholar 

  93. B. Militzer, D. Ceperley, J. D. Kress, et al., Phys. Rev. Lett. 87, 275502 (2001).

    Article  ADS  Google Scholar 

  94. E. S. Yakub, Physica B 265, 31 (1999).

    Article  ADS  Google Scholar 

  95. E. S. Yakub, Low Temp. Phys. 20, 579 (1994).

    ADS  Google Scholar 

  96. B. Holst, R. Redmer, V. Gryaznov, et al., I. Eur. Phys. J. D 66, 104 (2012).

    Article  ADS  Google Scholar 

  97. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, in Shock Waves and Extreme States of Matter, Collection of Articles, Ed. by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Nauka, Moscow, 2000), p. 299 [in Russian].

  98. I. L. Iosilevskii, Teplofiz. Vys. Temp. 18, 447 (1980).

    ADS  Google Scholar 

  99. I. L. Iosilevskii, in Encyclopedy of Low Temperature Plasma, Ed. by V. E. Fortov (Fizmatlit, Moscow, 2004), Vol. 3-1, p. 349 [in Russian].

  100. I. L. Iosilevskii and V. K. Gryaznov, Teplofiz. Vys. Temp. 19, 1121 (1981).

    ADS  Google Scholar 

  101. P. R. Levashov, V. S. Filinov, A. V. Botsan, et al., in Proceedings of the 9th Kharitonov Thematic Readings, Ed. by A. L. Mikhailov (RFYaTs-VNIIEF, Sarov, 2007), p. 276.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mochalov.

Additional information

Original Russian Text © M.A. Mochalov, R.I. Il’kaev, V.E. Fortov, A.L. Mikhailov, A.O. Blikov, V.A. Ogorodnikov, V.K. Gryaznov, I.L. Iosilevskii, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 3, pp. 592–620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, M.A., Il’kaev, R.I., Fortov, V.E. et al. Quasi-isentropic compressibility of a strongly nonideal deuterium plasma at pressures of up to 5500 GPa: Nonideality and degeneracy effects. J. Exp. Theor. Phys. 124, 505–529 (2017). https://doi.org/10.1134/S1063776117020157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117020157

Navigation