Skip to main content
Log in

Compressibility of Nonideal Deuterium and Helium Plasmas up to 20 TPa

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present our experimental results on the compressibility of strongly coupled (nonideal) degenerate deuterium and helium plasmas quasi-isentropically compressed to pressures P ~ 20 TPa in devices with a spherical geometry. The trajectories of the plasma-compressing metallic shells were recorded with the help of powerful pulsed X-ray sources (betatrons) with a boundary electron energy of 60 MeV. A high-current accelerator with a penetrability of objects with an equivalent thickness of 250-mm of lead has been used for the first time as an X-ray source in our experiments. Plasma densities up to ρ ≈ 14 g cm–3 were determined from the measured radius of the shell at the instant of its “stopping.” We derived the compressed-plasma pressure based on our gasdynamic computations including the real characteristics of the experimental devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. V. E. Fortov, R. I. Il’kaev, V. A. Arinin, V. V. Burtzev, V. A. Golubev, L. Iosilevskiy, V. V. Khrustalev, A. L. Mikhailov, M. A. Mochalov, V. Ya. Ternovoi, and M. V. Zhernokletov, Phys. Rev. Lett. 99, 185001 (2007).

    Article  ADS  Google Scholar 

  2. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, S. K. Grishechkin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, and V. K. Gryaznov, JETP Lett. 92, 300 (2010).

    Article  ADS  Google Scholar 

  3. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, E. A. Pronin, and A. A. Yukhimchuk, J. Exp. Theor. Phys. 115, 614 (2012).

    Article  ADS  Google Scholar 

  4. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Raevskii, V. A. Ogorodnikov, A. A. Yukhimchuk, A. I. Davydov, N. N. Anashkin, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, N. B. Davydov, V. A. Komrakov, A. I. Logvinov, et al., J. Exp. Theor. Phys. 119, 146 (2014).

    Article  ADS  Google Scholar 

  5. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, A. O. Blikov, V. A. Ogorodnikov, V. K. Gryaznov, and I. L. Iosilevskii, J. Exp. Theor. Phys. 124, 505 (2017).

    Article  ADS  Google Scholar 

  6. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Komrakov, I. P. Maksimkin, V. A. Ogorodnikov, and A. V. Ryzhkov, JETP Lett. 107, 168 (2018).

    Article  ADS  Google Scholar 

  7. M. V. Zhernokletov, V. A. Raevskii, S. F. Manachkin, N. B. Davydov, K. N. Panov, A. V. Ryzhkov, V. A. Arinin, B. I. Tkachenko, A. I. Logvinov, V. A. Komrakov, A. I. Davydov, and N. N. Anashkin, Combust. Explos., Shock Waves 54, 522 (2018).

  8. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, and A. A. Yukhimchuk, JETP Lett. 96, 158 (2012).

    Article  ADS  Google Scholar 

  9. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Komrakov, A. V. Ryzhkov, V. A. Ogorodnikov, and A. A. Yukhimchuk, JETP Lett. 101, 519 (2015).

    Article  ADS  Google Scholar 

  10. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, S. E. Elfimov, V. A. Komrakov, V. A. Ogorodnikov, and A. V. Ryzhkov, J. Exp. Theor. Phys. 98, 948 (2017).

    Article  ADS  Google Scholar 

  11. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, V. A. Komrakov, and I. P. Maksimkin, JETP Lett. 108, 656 (2018).

    Article  ADS  Google Scholar 

  12. M. V. Zhernokletov, V. K. Gryaznov, V. A. Arinin, V. N. Buzin, N. B. Davydov, R. I. Il’kaev, I. L. Iosilevsky, A. L. Mikhailov, M. G. Novikov, V. V. Khrustalev, and V. E. Fortov, JETP Lett. 96, 432 (2012).

    Article  ADS  Google Scholar 

  13. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Komrakov, I. P. Maksimkin, V. A. Ogorodnikov, and A. V. Ryzhkov, J. Phys. Chem. Biophys. 8 (2018).

  14. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, S. V. Erunov, V. A. Arinin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, V. A. Komrakov, V. G. Kudel’kin, I. P. Maksimkin, V. K. Gryaznov, I. L. Iosilevskii, P. R. Levashov, D. V. Minakov, and M. A. Paramonov, J. Exp. Theor. Phys. 132, 985 (2021).

    Article  ADS  Google Scholar 

  15. Yu. P. Kuropatkin, V. D. Mironenko, V. N. Suvorov, D. I. Zenkov, and B. F. Tkachenko, in Proceedings of the 11th IEEE Pulsed Power Conference, Ed. by G. Cooperstein and I. Vitkovitsky (1997), p. 1669.

  16. V. F. Basmanov, V. S. Gordeev, A. V. Grishin, N. V. Zav’yalov, G. A. Myskov, and S. T. Nazarenko, Tr. RFYaTs-VNIIEF 20, 172 (2015).

    Google Scholar 

  17. A. O. Blikov, I. S. Kalinin, V. A. Komrakov, M. A. Mochalov, V. A. Ogorodnikov, and A. V. Romanov, RF Patent No. 2545289 S1, Byull. Izobret., No. 9 (2015);

  18. A. O. Blikov, A. Yu. Gusev, V. A. Komrakov, A. V. Kotin, D. A. Linyaev, M. A. Mochalov, V. A. Ogorodnikov, and S. N. Shoshin, RF Patent No. 168263 U1 (2017).

  19. A. N. Golubkov, A. A. Kononenko, and A. A. Yukhimchuk, Fusion Sci. Technol. 48, 527(2005).

    Article  Google Scholar 

  20. A. Michels, W. de Graaff, T. Wassenaar, J. M. H. Levelt, and P. Louwerse, Physica (Amsterdam, Neth.) 25, 25 (1959).

  21. V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarnyi, Thermodynamical Properties of Helium (Izd-vo Standartov, Moscow, 1984) [in Russian].

    Google Scholar 

  22. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).

    Article  ADS  Google Scholar 

  23. V. A. Arinin and B. I. Tkachenko, Pattern Recogn. Image Anal. 19, 63 (2009).

    Article  Google Scholar 

  24. N. F. Gavrilov, G. G. Ivanova, V. I. Selin, and V. N. Sofronov, Vopr. At. Nauki Tekh., Ser. Metod. Program. Chisl. Reshen. Zadach Mat. Fiz., No. 3, 11 (1982).

  25. V. P. Kopyshev and V. V. Khrustalev, Prikl. Mekh. Tekh. Fiz. 21, 122 (1980).

    Google Scholar 

  26. V. P. Kopyshev, Prikl. Mekh. Tekh. Fiz. 12, 119 (1971).

    Google Scholar 

  27. V. P. Kopyshev, V. P. Kopyshev, and A. B. Medvedev, Preprint RFYaTs-VNIIEF (Sarov, 1995), p. 58.

    Google Scholar 

  28. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, JETP Lett. 16, 201 (1972).

    ADS  Google Scholar 

  29. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, Sov. Phys. JETP 42, 378 (1975).

    ADS  Google Scholar 

  30. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, Sov. Phys. JETP 48, 847 (1978).

    ADS  Google Scholar 

  31. D. Beule, W. Ebeling, A. Forster, H. Juranek, R. Redmer, and G. Ropke, Contrib. Plasma Phys. 39, 21 (1999).

    Article  ADS  Google Scholar 

  32. V. S. Filinov, P. R. Levashov, A. V. Botsan, M. Bonitz, and V. E. Fortov, J. Phys. A 42, 214002 (2009);

    Article  ADS  Google Scholar 

  33. P. R. Levashov, V. S. Filinov, A. Botan, M. Bonitz, and V. E. Fortov, J. Phys.: Conf. Ser. 121, 012012 (2008).

    Google Scholar 

  34. V. K. Gryaznov and I. L. Iosilevskiy, J. Phys. 42, 214007 (2009).

    ADS  Google Scholar 

  35. V. Gryaznov, I. Iosilevskiy, and V. Fortov, Plasma Phys. Control. Fusion 58, 014012 (2015).

    Article  ADS  Google Scholar 

  36. S. G. Grishechkin, S. K. Gruzdev, V. K. Gryaznov, M. V. Zhernokletov, R. I. Il’kaev, I. L. Iosilevskii, G. N. Kashintseva, S. I. Kirshanov, S. F. Manachkin, V. B. Mintsev, A. L. Mikhailov, A. B. Mezhevov, M. A. Mochalov, V. E. Fortov, V. V. Khrustalev, A. N. Shuikin, and A. A. Yukhimchuk, JETP Lett. 80, 398 (2004).

    Article  ADS  Google Scholar 

  37. G.V. Boriskov, A.I. Bykov, R. I. Il’kaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D. Urlin, A. N. Shuikin, and W. J. Nellis, Phys. Rev. B 71, 092104 (2005).

    Article  ADS  Google Scholar 

  38. R. F. Trunin, G. V. Boriskov, A. I. Bykov, R. I. Il’kaev, G. V. Simakov, V. D. Urlin, and A. N. Shuikin, Tech. Phys. 51, 907 (2006).

    Article  Google Scholar 

  39. M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay, and A. Deeney, Phys. Rev. B 69, 144209 (2004).

    Article  ADS  Google Scholar 

  40. P. Loubeyre, S. Brygoo, J. Eggert, R. M. Colliers, D. K. Spaulding, J. R. Rygg, T. R. Boehly, G. W. Collins, and R. Jeanloz, Phys. Rev. B 86, 144115 (2012).

    Article  ADS  Google Scholar 

  41. V. Gryaznov, S. Ayukov, V. Baturin, I. Iosilevskiy, A. Starostin, and V. Fortov, J. Phys. A 39, 4459 (2006);

    Article  ADS  Google Scholar 

  42. V. K. Gryaznov, I. L. Iosilevskiy, V. E. Fortov, et al., Contrib. Plasma Phys. 53, 392 (2013).

    Article  ADS  Google Scholar 

  43. B. Militzer, D. Ceperley, J. D. Kress, J. D. Johnson, L. A. Collins, and S. Mazevet, Phys. Rev. Lett. 87, 275502 (2001).

    Article  ADS  Google Scholar 

  44. E. S. Yakub, Phys. B (Amsterdam, Neth.) 265, 31 (1999).

  45. E. S. Yakub, Low Temp. Phys. 20, 579 (1994).

    ADS  Google Scholar 

  46. B. Holst, R. Redmer, V. Gryaznov, V. Fortov, and I. Iosilevskiy, Eur. Phys. J. D 66, 104 (2012).

    Article  ADS  Google Scholar 

  47. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, in Encyclopedy of Low-Temperature Plasma, Ed. by V. E. Fortov (Fizmatlit, Moscow, 2004), Vol. III-1, p. 111 [in Russian].

    Google Scholar 

  48. V. K. Gryaznov, I. L. Iosilevskii, Yu. G. Krasnikov, N. I. Kuznetsova, V. I. Kucherenko, G. B. Lappo, B. N. Lomakin, G. A. Pavlov, E. E. Son, and V. E. Fortov, Thermophysical Properties of Working Media of a Gas-Phase Nuclear Reactor, Ed. by V. M. Ievlev (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  49. V. K. Gryaznov and I. L. Iosilevskiy, Contrib. Plasma Phys. 56, 352 (2016).

    Article  ADS  Google Scholar 

  50. P. Loubeyre, R. LeToullec, M. Hanfland, R. J. Hemley, and H. K. Mao, Nature (London, U.K.) 383, 702 (1996).

    Article  ADS  Google Scholar 

  51. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, Prikl. Mekh. Tekh. Fiz. 3, 70 (1973).

    Google Scholar 

  52. I. Iosilevskiy, in Physics of Extreme States of Matter, Ed. by V. Fortov et al. (IPCPRAS, Chernogolovka, Russia, 2013), p. 136; arXiv: 1403.8053v3.

  53. I. L. Iosilevskii, in Encyclopedy of Low-Temperature Plasma, Ed. by V. E. Fortov (Fizmatlit, Moscow, 2004), Vol. III-1, p. 349 [in Russian].

    Google Scholar 

  54. I. Iosilevskii, Physics of Nonideal Coulomb Systems: Equation of State and Phase Transitions (Lambert Academic, Saarbrücken, Germany, 2011).

    Google Scholar 

  55. I. L. Iosilevskiy, J. Phys.: Conf. Ser. 653, 012077 (2015).

    Google Scholar 

  56. V. E. Fortov, Thermodynamics of Dynamic Effects on Matter (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  57. W. Ebeling and A. Forster, Thermophysical Properties of Hot Dense Plasma (B.G. Teubner, Berlin, 1991).

    Google Scholar 

  58. C. Winisdörffer and G. Chabrier, Phys. Rev. E 71, 026402 (2005).

    Article  ADS  Google Scholar 

  59. I. L. Iosilevskii, Teplofiz. Vys. Temp. 18, 447 (1980).

    Google Scholar 

  60. I. L. Iosilevskii, Yu. G. Krasnikov, E. E. Son, and V. E. Fortov, Thermodynamics and Transport in Non-Ideal Plasmas (MFTI, Moscow, 2000) [in Russian].

    Google Scholar 

  61. A. V. Chentsov and P. R. Levashov, Contrib. Plasma Phys. 52, 33 (2012).

    Article  ADS  Google Scholar 

  62. Ya. S. Lavrinenko, I. V. Morozov, and I. A. Valuev, Contrib. Plasma Phys. 59, e201800179 (2019).

    Article  ADS  Google Scholar 

  63. V. K. Gryaznov, M. V. Zhernokletov, V. N. Zubarev, I. L. Iosilevskii, and V. E. Fortov, Sov. Phys. JETP 51, 288 (1980).

    ADS  Google Scholar 

  64. Theory of the Inhomogeneous Electron Gas, Ed. by S. Lundqvist and N. March (Springer, New York, 1983).

    Google Scholar 

  65. R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, Cambridge, 2020).

    Book  MATH  Google Scholar 

  66. S. J. Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  67. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  68. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  69. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967).

  70. A. Becker, N. Nettelmann, B. Holst, and R. Redmer, Phys. Rev. B 88, 045122 (2013).

    Article  ADS  Google Scholar 

  71. D. Klakow, C. Töpffer, and P. G. Reinhard, J. Chem. Phys. 101, 10766 (1994).

    Article  ADS  Google Scholar 

  72. M. Knaup, P. G. Reinhard, C. Töpffer, and G. Zwicknagel, J. Phys. A 36, 6165 (2003).

    Article  ADS  Google Scholar 

  73. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  74. Y. S. Lavrinenko, I. V. Morozov, and I. A. Valuev, Contrib. Plasma Phys. 56, 448 (2016).

    Article  ADS  Google Scholar 

  75. I. V. Morozov and I. A. Valuev, Contrib. Plasma Phys. 52, 140 (2012).

    Article  ADS  Google Scholar 

  76. V. E. Fortov, Extreme States of Matter: High Energy Density Physics (Fizmatlit, Moscow, 2013; Springer, Switzerland, 2016).

  77. V. E. Fortov, Thermodynamics and Equations of State for Matter: From Ideal Gas To Quark-gluon Plasma (Fizmatlit, Moscow, 2012; World Scientific, Singapore, 2016).

  78. V. E. Fortov and I. T. Iakubov, Physics of Non-Ideal Plasma (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  79. A. V. Bushman, B. N. Lomakin, V. A. Sechenov, I. R. Sharipdzhanov, O. E. Shchekotov, and V. E. Fortov, Sov. Phys. JETP 42, 828 (1975).

    ADS  Google Scholar 

  80. G. V. Boriskov, A. I. Bykov, N. I. Egorov, M. V. Zhernokletov, V. N. Pavlov, I. S. Strelkov, O. M. Surdin, V. I. Timareva, and S. I. Belov, J. Exp. Theor. Phys. 130, 183 (2020).

    Article  ADS  Google Scholar 

  81. G. V. Boriskov, S. I. Belov, A. I. Bykov, M. I. Dolotenko, N. I. Egorov, A. S. Korshunov, Yu. B. Kudasov, I. V. Makarov, V. D. Selemir, and A. V. Filippov, J. Low Temp. Phys. 159, 307 (2010).

    Article  ADS  Google Scholar 

  82. I. M. Saitov, JETP Lett. 110, 206 (2019).

    Article  ADS  Google Scholar 

  83. I. L. Iosilevskii, in Proceedings of the International Conference XXI Kharitonov Thematic Scientific Readings, Sarov, Russia, Apr. 15–19, 2019.

  84. G. I. Kerley, LASL Sci. Report LA-4776 (1972).

  85. V. P. Kopyshev and V. D. Urlin, in Shock Waves and Extremal States of Matter, Ed. by V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov (Nauka, Moscow, 2000), p. 297 [in Russian].

    Google Scholar 

  86. V. D. Urlin, J. Exp. Theor. Phys. 117, 833 (2013).

    Article  ADS  Google Scholar 

  87. S. I. Blinnikov, R. I. Il’kaev, M. A. Mochalov, A. L. Mikhailov, I. L. Iosilevskiy, A. V. Yudin, S. I. Glazyrin, A. A. Golubev, V. K. Gryaznov, and S. V. Fortova, Phys. Rev. E 99, 033102 (2019).

    Article  ADS  Google Scholar 

  88. M. Bonits, I. A. Mulenko, E. N. Oleinikova, B. C. Filinov, V. E. Fortov, and A. L. Khomkin, Plasma Phys. Rep. 27, 1025 (2001).

    Article  ADS  Google Scholar 

  89. K. P. Driver and B. Militzer, Phys. Rev. B 93, 064101 (2016).

    Article  ADS  Google Scholar 

  90. G. Mazzola, R. Helled, and S. Sorella, Phys. Rev. Lett. 120, 025701 (2018).

    Article  ADS  Google Scholar 

  91. W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 82, 195107 (2010).

    Article  ADS  Google Scholar 

  92. M. A. Morales, C. Pierleoni, E. Schwegler, and D. M. Ceperley, Proc. Natl. Acad. Sci. U. S. A. 107, 12799 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the research workers that participated in organizing and conducting the experiments and processing the data: R.V. Borisov, S.E. Elfimov, A.S. Pupkov, A.V. Romanov, D.P. Turutin, A.I. Gurkin, M.V. Loginov, D.A. Linyaev, G.S. Yandubaev, V.V. Erastov, and V.V. Kovaldov.

Funding

This work was supported by the National Center for Physics and Mathematics, the Minisitry of Science and Higher Education of Russia (contract no. 075-15-2020-785 with the Joint Institute for High Temperatures of the Russian Academy of Sciences and a program for the creation of youth laboratories (scientific topic Gas Dynamics and the Physics of Explosion)), the Russian Foundation for Basic Research (project nos. 19-32-90193, 20-02-00287), the State assignment (State registration number AAA-A19-119071190040-5), and the Federal State Unitary Enterprise “RFNC–VNIIEF”–Institute for Problems of Chemical Physics of the Russian Academy of Sciences (contract no. 253/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Blikov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, M.A., Il’kaev, R.I., Fortov, V.E. et al. Compressibility of Nonideal Deuterium and Helium Plasmas up to 20 TPa. J. Exp. Theor. Phys. 133, 630–648 (2021). https://doi.org/10.1134/S106377612111011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612111011X

Navigation