Skip to main content
Log in

Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Direct-drive fusion targets are considered at present as an alternative to targets of indirect compression at a laser energy level of about 2 MJ. In this approach, the symmetry of compression and ignition of thermonuclear fuel play the major role. We report on the results of theoretical investigation of compression and burning of spherical direct-drive targets in the conditions of spatial nonuniformity of heating associated with a shift of the target from the beam center of focusing and possible laser radiation energy disbalance in the beams. The investigation involves numerous calculations based on a complex of 1D and 2D codes RAPID, SEND (for determining the target illumination and the dynamics of absorption), DIANA, and NUT (1D and multidimensional hydrodynamics of compression and burning of targets). The target under investigation had the form of a two-layer shell (ablator made of inertial material CH and DT ice) filled with DT gas. We have determined the range of admissible variation of compression and combustion parameters of the target depending on the variation of the spatial nonuniformity of its heating by a multibeam laser system. It has been shown that low-mode (long-wavelength) perturbations deteriorate the characteristics of the central region due to less effective conversion of the kinetic energy of the target shell into the internal energy of the center. Local initiation of burning is also observed in off-center regions of the target in the case of substantial asymmetry of irradiation. In this case, burning is not spread over the entire volume of the DT fuel as a rule, which considerably reduces the thermonuclear yield as compared to that in the case of spherical symmetry and central ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Basov and O. N. Krokhin, Sov. Phys. JETP 19, 123 (1964).

    Google Scholar 

  2. N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res. 13, 396 (1992).

    Article  Google Scholar 

  3. M. Tabak, J. M. Hammer, M. E. Glinsky, et al., Phys. Plasmas 1, 1626 (1994).

    Article  ADS  Google Scholar 

  4. S. Yu. Gus’kov, Plasma Phys. Rep. 39, 1 (2013).

    Article  ADS  Google Scholar 

  5. J. C. Fernández, B. J. Albright, F. N. Beg, et al., Nucl. Fusion 54, 054006 (2014).

    Article  ADS  Google Scholar 

  6. D. S. Clark and M. Tabak, Nucl. Fusion 47, 1147 (2007).

    Article  ADS  Google Scholar 

  7. M. Murakami, H. Nagatomo, T. Johzaki, et al., Nucl. Fusion 54, 054007 (2014).

    Article  ADS  Google Scholar 

  8. V. A. Shcherbakov, Sov. J. Plasma Phys. 9, 240 (1983).

    Google Scholar 

  9. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).

    Article  ADS  Google Scholar 

  10. G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004).

    Article  ADS  Google Scholar 

  11. E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009).

    Article  ADS  Google Scholar 

  12. O. A. Hurricane, in Proceedings of the 9th International Conference on Inertial Fusion Sciences and Applications, Seattle, USA, 2015, p. 51.

    Google Scholar 

  13. J. D. Lindl, Phys. Plasmas 2, 3933 (1995).

    Article  ADS  Google Scholar 

  14. M. J. Edwards, P. K. Patel, J. D. Lindl, et al., Phys. Plasmas 20, 070501 (2013).

    Article  ADS  Google Scholar 

  15. O. A. Hurricane, D. A. Callahan, D. T. Casey, et al., Nature 506, 343 (2014).

    Article  ADS  Google Scholar 

  16. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, P. A. Kuchugov, N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 121, 686 (2015).

    Article  ADS  Google Scholar 

  17. N. N. Demchenko, I. Ya. Doskoch, S. Yu. Gus’kov, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, G. A. Vergunova, R. A. Yakhin, and N. V. Zmitrenko, Laser Part. Beams 33, 655 (2015).

    Article  ADS  Google Scholar 

  18. N. N. Demchenko, S. Yu. Gus’kov, P. A. Kuchugov, V.B. Rozanov, R. V. Stepanov, G. A. Vergunova, R. A. Yakhin, and N. V. Zmitrenko, in Proceedings of the 9th International Conference on Inertial Fusion Sciences and Applications, Seattle, USA, 2015, p. 77.

    Google Scholar 

  19. V. B. Rozanov, S. Yu. Gus’kov, G. A. Vergunova, N. N. Demchenko, R. V. Stepanov, I. Ya. Doskoch, R. A. Yakhin, N. V. Zmitrenko, and P. A. Kuchugov, in Proceedings of the 33rd European Conference on Laser Interaction with Matter, 2014, p. 49.

    Google Scholar 

  20. S. Yu. Gus’kov, N. N. Demchenko, N. V. Zhidkov, N. V. Zmitrenko, D. N. Litvin, V. B. Rozanov, R. V. Stepanov, N. A. Suslov, and R. A. Yakhin, J. Exp. Theor. Phys. 111, 466 (2010).

    Article  ADS  Google Scholar 

  21. Yu. V. Afanas’ev, E. G. Gamalii, N. N. Demchenko, O. N. Krokhin, and V. B. Rozanov, Sov. Phys. JETP 52, 425 (1980).

    ADS  Google Scholar 

  22. Yu. V. Afanas’ev, E. G. Gamalii, N. N. Demchenko, and V. B. Rozanov, Tr. Fiz. Inst. im. P. N. Lebedeva, Ross. Akad. Nauk 134, 32 (1982).

    Google Scholar 

  23. V. B. Rozanov and N. N. Demchenko, Sov. J. Quantum Electron. 15, 1251 (1985).

    Article  ADS  Google Scholar 

  24. N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeev, I. I. Shelaputin, and G. V. Shpatakovskaya, Vopr. At. Nauki Tekh., Ser.: Metod. Program. Chisl. Reshen. Zadach Mat. Fiz. 2, 34 (1983).

    Google Scholar 

  25. V. F. Tishkin, V. V. Nikishin, I. V. Popov, and A. P. Favorskii, Mat. Model. 7 (5), 15 (1995).

    Google Scholar 

  26. I. G. Lebo and V. F. Tishkin, Study of Hydrodynamical Instability in Problems of Laser Thermonuclear Synthesis by Mathematical Simulation Methods (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  27. W. J. Hogan, J. Coutant, S. Nakai, V. B. Rozanov, and G. Velarde, Energy from Inertial Fusion (IAEA, Vienna, 1995), p. 457.

    Google Scholar 

  28. K. S. Anderson, P. W. McKenty, A. Shvydky, et al., in Proceedings of the 57th Annual Meeting of the APS Division of Plasma Physics, Savannah, USA, 2015, p. UO4.00013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Kuchugov.

Additional information

Original Russian Text © S.A. Bel’kov, S.V. Bondarenko, G.A. Vergunova, S.G. Garanin, S.Yu. Gus’kov, N.N. Demchenko, I.Ya. Doskoch, N.V. Zmitrenko, P.A. Kuchugov, V.B. Rozanov, R.V. Stepanov, R.A. Yakhin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 2, pp. 396–408.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bel’kov, S.A., Bondarenko, S.V., Vergunova, G.A. et al. Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse. J. Exp. Theor. Phys. 124, 341–351 (2017). https://doi.org/10.1134/S1063776117010113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117010113

Navigation