Skip to main content
Log in

Compression and Burning of a Thermonuclear Target upon Shock Ignition under the Conditions of Laser Beam Irradiation Symmetry Violation

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of heating homogeneity violations in a laser thermonuclear target designed for shock ignition on the target compression and burning has been studied. We have performed our studies based on two-dimensional hydrodynamic simulations when modeling the target heating homogeneity violations due to various factors of symmetry violation of the target irradiation by a finite number of laser beams. The gains have been calculated at various perturbation amplitudes of the spatial distribution of absorbed energy in the target for two characteristic cases—low and high dominant perturbation modes. The first and second cases refer, respectively, to the factors of regular irradiation homogeneity violation due to a finite number of laser beams and a target offset from the focusing point and the factors of stochastic irradiation homogeneity violation related to laser beam energy imbalance, beam mispointing, and beam mistiming. We show that for a target designed for shock ignition the factors of regular irradiation homogeneity violation are much more dangerous than those for a spark ignition target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. A. Shcherbakov, Sov. J. Plasma Phys. 9, 240 (1983).

    Google Scholar 

  2. N. G. Basov and O. N. Krokhin, Sov. Phys. JETP 19, 123 (1964).

    Google Scholar 

  3. J. Lindl, Phys. Plasmas 2, 3933 (1995).

    Article  ADS  Google Scholar 

  4. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, P. A. Kuchugov, N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 121, 686 (2015).

    Article  ADS  Google Scholar 

  5. M. Lafon, X. Ribeyre, and G. Schurtz, Phys. Plasmas 17, 052704 (2010).

    Article  ADS  Google Scholar 

  6. W. L. Shang, R. Betti, S. X. Hu, et al., Phys. Rev. Lett. 119, 195001 (2017).

    Article  ADS  Google Scholar 

  7. L. J. Perkins, R. Betti, K. N. la Fortune, et al., Phys. Rev. Lett. 103, 045004 (2009).

    Article  ADS  Google Scholar 

  8. E. Moses and C. R. Wuest, Fusion Sci. Technol. 47, 314 (2005).

    Article  Google Scholar 

  9. O. A. Hurricane, D. A. Callahan, D. T. Casey, et al., Nature (London, U.K.) 506, 343 (2014).

    Article  ADS  Google Scholar 

  10. S. G. Garanin, Phys. Usp. 54, 415 (2011).

    Article  ADS  Google Scholar 

  11. S. Atzeni, A. Marocchino, and A. Schiavi, Phys. Plasmas 19, 090702 (2012).

    Article  ADS  Google Scholar 

  12. R. Betti, C. D. Zhou, K. S. Anderson, et al., Phys. Rev. Lett. 98, 155001 (2007).

    Article  ADS  Google Scholar 

  13. D. Besnard, Europhys. J. D 44, 207 (2006).

    ADS  Google Scholar 

  14. R. L. McCrory, R. Betti, T. R. Boehlyetal, et al., Nucl. Fusion 53, 113021 (2013).

    Article  ADS  Google Scholar 

  15. B. Canaud, X. Fortin, N. Dague, et al., Phys. Plasmas 9, 4252 (2002).

    Article  ADS  Google Scholar 

  16. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, N. V. Zmitrenko, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 124, 341 (2017).

    Article  ADS  Google Scholar 

  17. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, P. A. Kuchugov, N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 127, 539 (2018).

    Article  ADS  Google Scholar 

  18. S. A. Bel’kov, S. V. Bondarenko, N. N. Demchenko, et al., Plasma Phys. Control. Fusion 61, 025011 (2019).

    Article  ADS  Google Scholar 

  19. I. V. Igumenshchev, V. N. Goncharov, F. J. Marshall, et al., Phys. Plasmas 23, 052702 (2016).

    Article  ADS  Google Scholar 

  20. X. Ribeyre, G. Schurtz, M. Lafon, et al., Plasma Phys. Control. Fusion 51, 015013 (2009).

    Article  ADS  Google Scholar 

  21. K. S. Anderson, R. Betti, P. W. McKenty, et al., Phys. Plasmas 20, 056312 (2013).

    Article  ADS  Google Scholar 

  22. S. Atzeni, Nucl. Fusion 54, 054008 (2014).

    Article  ADS  Google Scholar 

  23. A. J. Schmitt, J. W. Bates, S. P. Obenschaim, et al., Phys. Plasmas 17, 042701 (2010).

    Article  ADS  Google Scholar 

  24. S. Atzeni, A. Schiavi, A. Marocchino, et al., Plasma Phys. Control. Fusion 53, 035010 (2011).

    Article  ADS  Google Scholar 

  25. S. Atzeni, A. Schiavi, and C. Bellei, Phys. Plasmas 14, 052702 (2007).

    Article  ADS  Google Scholar 

  26. M. Dunne, Nat. Phys. 2, 2 (2006).

    Article  Google Scholar 

  27. X. Ribeyre, M. Lafon, G. Schurtz, et al., Plasma Phys. Control. Fusion 51, 124030 (2009).

    Article  ADS  Google Scholar 

  28. S. Atzeni, A. Marocchino, A. Schiavi, and G. Schurtz, New J. Phys. 15, 045004 (2013).

    Article  ADS  Google Scholar 

  29. V. Rozanov, G. Vergunova, S. Guskov, et al., J. Phys.: Conf. Ser. 244, 022059 (2010).

    Google Scholar 

  30. V. B. Rozanov and N. N. Demchenko, Sov. J. Quantum Electron. 15, 1251 (1985).

    Article  ADS  Google Scholar 

  31. N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeev, et al., Vopr. At. Nauki Tekh., Ser.: Metod. Program. Chisl. Reshen. Zadach Mat. Fiz., No. 2, 34 (1983).

  32. V. F. Tishkin, V. V. Nikishin, I. V. Popov, and A. P. Favorskii, Mat. Model. 7, 15 (1995).

    Google Scholar 

  33. I. G. Lebo and V. F. Tishkin, Investigation of Hydrodynamic Instability in Problems of Laser Thermonuclear Fusion Using Mathematical Modeling Methods (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  34. S. Yu. Gus’kov, N. N. Demchenko, N. V. Zhidkov, N. V. Zmitrenko, D. N. Litvin, V. B. Rozanov, R. V. Stepanov, N. A. Suslov, and R. A. Yakhin, J. Exp. Theor. Phys. 111, 466 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 16-11-10174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Yakhin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gus’kov, S.Y., Demchenko, N.N., Zmitrenko, N.V. et al. Compression and Burning of a Thermonuclear Target upon Shock Ignition under the Conditions of Laser Beam Irradiation Symmetry Violation. J. Exp. Theor. Phys. 130, 748–758 (2020). https://doi.org/10.1134/S1063776120030140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030140

Navigation