Skip to main content
Log in

Gravitational collapse of dark energy field configurations and supermassive black hole formation

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Pierce, D. L. Welch, R. D. McClure, et al., Nature 371, 385 (1994).

    Article  ADS  Google Scholar 

  2. W. L. Freedman, B. F. Madore, J. R. Mould, et al., Nature 371, 757 (1994).

    Article  ADS  Google Scholar 

  3. Anupam Singh, Phys. Rev. D 52, 6700 (1995).

    Article  ADS  Google Scholar 

  4. A. K. Gupta, C. T. Hill, R. Holman, and E. W. Kolb, Phys. Rev. D 45, 441 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  5. G. ’t Hooft, in Recent Developments in Gauge Theories (Plenum, New York, 1980).

    Book  Google Scholar 

  6. R. Holman and A. Singh, Phys. Rev. D 47, 421 (1993).

    Article  ADS  Google Scholar 

  7. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, Redwood City, 1990).

    MATH  Google Scholar 

  8. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  9. J. Balakrishna, R. Bondarescu, G. Daues, et al., Class. Quantum Grav. 23, 2631 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Alcubierre, B. Breugmann, T. Dramlitsch, et al., Phys. Rev. D 62, 124011 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  11. T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59, 024007 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Loffler, J. Faber, E. Bentivegna, et al., Class. Quant. Grav. 29, 115001 (2012).

    Article  ADS  Google Scholar 

  14. J. Thornburg, Phys. Rev. D 54, 4899 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Singh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhalani, V., Kharkwal, H. & Singh, A. Gravitational collapse of dark energy field configurations and supermassive black hole formation. J. Exp. Theor. Phys. 123, 827–831 (2016). https://doi.org/10.1134/S1063776116130148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116130148

Navigation