Skip to main content
Log in

Gravitational wave formation from the collapse of dark energy field configurations

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Dark energy is the dominant component of the energy density in the Universe. In a previous paper, we have shown that the collapse of dark energy fields leads to the formation of supermassive black holes with masses comparable to the masses of black holes at the centers of galaxies. Thus, it becomes a pressing issue to investigate the other physical consequences of the collapse of dark energy fields. Given that the primary interactions of dark energy fields with the rest of the Universe are gravitational, it is particularly interesting to investigate the gravitational wave signals emitted during the collapse of dark energy fields. This is the focus of the current work described in this paper. We describe and use the 3+1 BSSN formalism to follow the evolution of the dark energy fields coupled with gravity and to extract the gravitational wave signals. Finally, we describe the results of our numerical computations and the gravitational wave signals produced by the collapse of dark energy fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Pierce, D. L. Welch, R. D. McClure, S. van den Bergh, R. Racine, and P. B. Stetson, Nature 371, 385 (1994).

    Article  ADS  Google Scholar 

  2. W. L. Freedman et al., Nature 371, 757 (1994).

    Article  ADS  Google Scholar 

  3. A. Singh, Phys. Rev. D 52, 6700 (1995).

    Article  ADS  Google Scholar 

  4. A. K. Gupta, C. T. Hill, R. Holman, and E. W. Kolb, Phys. Rev. D 45, 441 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  5. G.’t Hooft, in Recent Developments in Gauge Theories, Ed. by G.’t Hooft (Plenum, New York, 1980).

  6. R. Holman and A. Singh, Phys. Rev. D 47, 421 (1993).

    Article  ADS  Google Scholar 

  7. V. Jhalani, H. Kharkwal, and A. Singh, J. Exp. Theor. Phys. 123, 827 (2016).

    Article  ADS  Google Scholar 

  8. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, Reading, MA, 1990).

    MATH  Google Scholar 

  9. S. Weinberg, Gravitation and Cosmology (Wiley, Chichester, 1972).

    Google Scholar 

  10. J. Balakrishna et al., Class. Quant. Grav. 23, 2631 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Alcubierre, B. Breugmann, T. Dramlitsch, J. A. Font, P. Papadopoulos, E. Seidel, N. Stergioulas, and R. Takahashi, Phys. Rev. D 15, 124011 (2000).

    Article  Google Scholar 

  12. T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59, 024007 (1998) M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).

    Article  ADS  Google Scholar 

  13. EINSTEIN TOOLKIT: A Community Toolkit for Numerical Relativity. http://www.einsteintoolkit.org.

  14. K. Camarda and E. Swidel, Phys. Rev. D 59, 064019 (1999).

    Article  ADS  Google Scholar 

  15. L. Rezzolla et al., Phys. Rev. D 59, 064001 (1999).

    Article  ADS  Google Scholar 

  16. J. Baker et al., Phys. Rev. D 62, 127701 (2000).

    Article  ADS  Google Scholar 

  17. T. Regge and J. Wheeler, Phys. Rev. 108, 1063 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  18. F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).

    Article  ADS  Google Scholar 

  19. F. J. Zerilli, J. Math. Phys. 11, 2203 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. Moncrief, Ann. Phys. 88, 323 (1974).

    Article  ADS  Google Scholar 

  21. A. Nagar and L. Rezzolla, Class. Quantum Grav. 22, R167 (2005); Class. Quantum Grav. 23, 4297(E) (2006).

    Google Scholar 

  22. K. Thorne, Rev. Mod. Phys. 52, 285 (1980).

    Article  ADS  Google Scholar 

  23. R. Arnowitt, S. Deser, and C. W. Misner, Gen. Relat. Gravit. 40, 1997 (2008).

    Article  ADS  Google Scholar 

  24. K. Camarda and E. Seidel, Phys. Rev. D 59, 064019 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Singh.

Additional information

Original Russian Text © V. Jhalani, A. Mishra, A. Singh, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 4, pp. 752–758.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhalani, V., Mishra, A. & Singh, A. Gravitational wave formation from the collapse of dark energy field configurations. J. Exp. Theor. Phys. 125, 638–643 (2017). https://doi.org/10.1134/S1063776117090035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117090035

Navigation