Skip to main content
Log in

High-precision measurements of the compressibility of chalcogenide glasses at a hydrostatic pressure up to 9 GPa

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The volumes of glassy germanium chalcogenides GeSe2, GeS2, Ge17Se83, and Ge8Se92 are precisely measured at a hydrostatic pressure up to 8.5 GPa. The stoichiometric GeSe2 and GeS2 glasses exhibit elastic behavior in the pressure range up to 3 GPa, and their bulk modulus decreases at pressures higher than 2–2.5 GPa. At higher pressures, inelastic relaxation processes begin and their intensity is proportional to the logarithm of time. The relaxation rate for the GeSe2 glasses has a pronounced maximum at 3.5–4.5 GPa, which indicates the existence of several parallel structural transformation mechanisms. The nonstoichiometric glasses exhibit a diffuse transformation and inelastic behavior at pressures above 1–2 GPa. The maximum relaxation rate in these glasses is significantly lower than that in the stoichiometric GeSe2 glasses. All glasses are characterized by the “loss of memory” of history: after relaxation at a fixed pressure, the further increase in the pressure returns the volume to the compression curve obtained without a stop for relaxation. After pressure release, the residual densification in the stoichiometric glasses is about 7% and that in the Ge17Se83 glasses is 1.5%. The volume of the Ge8Se92 glass returns to its initial value within the limits of experimental error. As the pressure decreases, the effective bulk moduli of the Ge17Se83 and Ge8Se92 glasses coincide with the moduli after isobaric relaxation at the stage of increasing pressure, and the bulk modulus of the stoichiometric GeSe2 glass upon decreasing pressure noticeably exceeds the bulk modulus after isobaric relaxation at the stage of increasing pressure. Along with the reported data, our results can be used to draw conclusions regarding the diffuse transformations in glassy germanium chalcogenides during compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Susman, K. J. Volin, D. G. Montague, and D. L. Price, J. Non-Cryst. Sol. 125, 168 (1990).

    Article  ADS  Google Scholar 

  2. Q. Mei, C. J. Benmore, R. T. Hart, et al., Phys. Rev. B 74, 014203 (2006).

    Article  ADS  Google Scholar 

  3. P. S. Salmon and A. Zeidler, J. Phys.: Condens. Matter 27, 133201 (2015).

    ADS  Google Scholar 

  4. P. S. Salmon and I. Petri, J. Phys.: Condens. Matter 15, S1509 (2003).

    ADS  Google Scholar 

  5. P. Vashishta, R. K. Kalia, and I. Ebbsjö, Phys. Rev. B 39, 6034 (1989).

    Article  ADS  Google Scholar 

  6. L. B. Skinner, C. J. Benmore, S. Antao, et al., J. Phys. Chem. C 116, 2212 (2012).

    Article  Google Scholar 

  7. F. Wang, S. Mamedov, P. Boolchand, et al., Phys. Rev. B 71, 174201 (2005).

    Article  ADS  Google Scholar 

  8. S. Hosokawa, I. Oh, M. Sakurai, et al., Phys. Rev. B 84, 014201 (2011).

    Article  ADS  Google Scholar 

  9. S. M. Antao, C. J. Benmore, B. Li, et al., Phys. Rev. Lett. 100, 115501 (2008).

    Article  ADS  Google Scholar 

  10. A. Zeidler, J. W. E. Drewitt, P. S. Salmon, et al., J. Phys.: Condens. Matter 21, 47217 (2009).

    Google Scholar 

  11. V. Vaccari, G. Garbarino, J. Aquilanti, et al., Phys. Rev. B 81, 014205 (2010).

    Article  ADS  Google Scholar 

  12. L. F. Kulikova, L. M. Lityagina, I. P. Zibrov, T. I. Dyuzheva, N. A. Nikolaev, and V. V. Brazhkin, Inorg. Mater. 50, 768 (2014).

    Article  Google Scholar 

  13. V. V. Brazhkin, E. Bychkov, and M. V. Kondrin, JETP Lett. 100, 451 (2014).

    Article  ADS  Google Scholar 

  14. M. Durandurdu and D. A. Drabold, Phys. Rev. B 65, 104208 (2002).

    Article  ADS  Google Scholar 

  15. M. Durandurdu, Phys. Rev. B 79, 205202 (2009).

    Article  ADS  Google Scholar 

  16. S. Asokan, M. V. N. Prasad, G. Parthasarathy, and E. S. R. Gopal, Phys. Rev. Lett. 62, 808 (1989).

    Article  ADS  Google Scholar 

  17. P. W. Bridgman, J. Wash. Acad. Sci. 38, 3873 (1948).

    Google Scholar 

  18. C. Sanloup, E. Gregoryanz, O. Degtyareva, and M. Hanfland, Phys. Rev. Lett. 100, 075701 (2008).

    Article  ADS  Google Scholar 

  19. K. H. Smith, E. Shero, A. Chizmeshya, and G. H. Wolf, J. Chem. Phys. 102, 6851 (1995).

    Article  ADS  Google Scholar 

  20. G. Shen, N. Sata, M. Newville, et al., Appl. Phys. Lett. 81, 1411 (2002).

    Article  ADS  Google Scholar 

  21. T. Sato and N. Funamori, Rev. Sci. Instr. 79, 0739 (2008).

    Article  Google Scholar 

  22. R. Ota, T. Yamate, N. Soga, and M. Kunugi, J. Non.-Cryst. Sol. 29, 67 (1978).

    Article  ADS  Google Scholar 

  23. O. B. Tsiok, V. V. Bredikhin, V. A. Sidorov, and L. G. Khvostantsev, High Press. Res. 10, 523 (1992).

    Article  ADS  Google Scholar 

  24. O. B. Tsiok, V. V. Brazhkin, A. G. Lyapin, and L. G. Khvostantsev, Phys. Rev. Lett. 80, 999 (1998).

    Article  ADS  Google Scholar 

  25. V. V. Brazhkin, Y. Katayama, K. Trachenko, et al., Phys. Rev. Lett. 101, 035702 (2008).

    Article  ADS  Google Scholar 

  26. V. V. Brazhkin, O. B. Tsiok, and Y. Katayama, JETP Lett. 89, 244 (2009).

    Article  ADS  Google Scholar 

  27. K. Trachenko, V. V. Brazhkin, O. B. Tsiok, et al., Phys. Rev. Lett. 98, 135502 (2007).

    Article  ADS  Google Scholar 

  28. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).

    Article  ADS  Google Scholar 

  29. J. Schroeder, T. G. Bilodeau, and X. S. Zhao, High Press. Res. 4, 531 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Brazhkin.

Additional information

Original Russian Text © V.V. Brazhkin, E. Bychkov, O.B. Tsiok, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 2, pp. 356–367.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazhkin, V.V., Bychkov, E. & Tsiok, O.B. High-precision measurements of the compressibility of chalcogenide glasses at a hydrostatic pressure up to 9 GPa. J. Exp. Theor. Phys. 123, 308–317 (2016). https://doi.org/10.1134/S1063776116060108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116060108

Navigation