Skip to main content
Log in

Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s 2) and Sr(5s 2) atoms

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = |m| = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ~ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s 2) and Sr(5s 2) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (ln).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994).

    Book  Google Scholar 

  2. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions (Springer-Verlag, Berlin, 1998).

    Book  Google Scholar 

  3. B. M. Smirnov, Sov. Phys.—Usp. 23 (8), 450 (1980).

    Article  ADS  Google Scholar 

  4. Rydberg States of Atoms and Molecules, Ed. by R. Stebbings and F. Dunning (Cambridge University Press, Cambridge, 1983; Mir, Moscow, 1985).

  5. I. L. Beigman and V. S. Lebedev, Phys. Rep. 250, 95 (1995).

    Article  ADS  Google Scholar 

  6. V. S. Lebedev, Collision Processes Involving Highly Excited Atoms and Neutral Particles, Ed. by I. M. Khalatnikov (Cambridge Scientific Publishers, Cambridge, 2004), Vol. 21, Part 1, pp. 1–304.

  7. G. V. Golubkov and G. K. Ivanov, Rydberg States of Atoms and Molecules and Elementary Processes with Their Participation (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  8. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Springer-Verlag, New York, 1987).

    Book  Google Scholar 

  9. Z. Dacic Gaeta and C. R. Stroud, Phys. Rev. A: At., Mol., Opt. Phys. 42, 6308 (1990).

    Article  ADS  Google Scholar 

  10. J.-C. Gay, D. Delande, and A. Bommier, Phys. Rev. A: At., Mol., Opt. Phys. 39, 6587 (1989).

    Article  ADS  Google Scholar 

  11. M. Brune, P. Nussenzveig, F. Schmidt-Kaler, F. Bernardot, A. Maali, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 72, 3339 (1994).

    Article  ADS  Google Scholar 

  12. M. P. de Boer, J. H. Hoogenraad, R. B. Vrijen, L. D. Noordam, and H. G. Muller, Phys. Rev. Lett. 71, 3263 (1993).

    Article  ADS  Google Scholar 

  13. E. de Prunelé, Phys. Rev. A: At., Mol., Opt. Phys. 31, 3593 (1985).

    Article  ADS  Google Scholar 

  14. T. Yoshizawa and M. Matsuzawa, J. Phys. Soc. Jpn. 54, 918 (1985).

    Article  ADS  Google Scholar 

  15. S. B. Hansen, T. Ehrenreich, E. Horsdal-Pedersen, K. B. MacAdam, and L. J. Dubë, Phys. Rev. Lett. 71, 1522 (1993).

    Article  ADS  Google Scholar 

  16. R. G. Hulet and D. Kleppner, Phys. Rev. Lett. 51, 1430 (1983).

    Article  ADS  Google Scholar 

  17. C. H. Cheng, C. Y. Lee, and T. F. Gallagher, Phys. Rev. Lett. 73, 3078 (1994).

    Article  ADS  Google Scholar 

  18. R. Lutwak, J. Holley, P. P. Chang, S. Paine, D. Kleppner, and T. Ducas, Phys. Rev. A: At., Mol., Opt. Phys. 56, 1443 (1997).

    Article  ADS  Google Scholar 

  19. J. M. Raimond, T. Meunier, P. Bertet, S. Gleyzes, P. Maioli, A. Auffeves, G. Nogues, M. Brune, and S. Haroche, J. Phys. B: At., Mol., Opt. Phys. 38, S535 (2005).

    Article  ADS  Google Scholar 

  20. L. Kristensen, T. Bové, B. D. DePaola, T. Ehrenreich, E. Horsdal-Pedersen, and O. E. Povlsen, J. Phys. B: At., Mol., Opt. Phys. 33, 1103 (2000).

    Article  ADS  Google Scholar 

  21. J. Preclíková, A. Waheed, D. Fregenal, Ø. Frette, B. Hamre, B. T. Hjertaker, E. Horsdal, I. Pilskog, and M. Førre, Phys. Rev. A: At., Mol., Opt. Phys. 85, 043416 (2012).

    Article  ADS  Google Scholar 

  22. S. I. Simonsen, S. A. Sørngård, M. Førre, and J. P. Hansen, Phys. Rev. A: At., Mol., Opt. Phys. 86, 043423 (2012).

    Article  ADS  Google Scholar 

  23. B. Wyker, S. Ye, F. B. Dunning, S. Yoshida, C. O. Reinhold, and J. Burgdörfer, Phys. Rev. A: At., Mol., Opt. Phys. 84, 043412 (2011).

    Article  ADS  Google Scholar 

  24. D. A. Anderson, A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Phys. Rev. A: At., Mol., Opt. Phys. 88, 031401(R) (2013).

    Article  ADS  Google Scholar 

  25. L. Sælen, S. I. Simonsen, and J. P. Hansen, Phys. Rev. A: At., Mol., Opt. Phys. 83, 015401 (2011).

    Article  ADS  Google Scholar 

  26. B. Hezel, M. Mayle, and P. Schmelcher, Phys. Rev. A: At., Mol., Opt. Phys. 84, 063402 (2011).

    Article  ADS  Google Scholar 

  27. D. Janby, L. B. Madsen, and V. N. Ostrovsky, Phys. Rev. A: At., Mol., Opt. Phys. 73, 062708 (2006).

    Article  ADS  Google Scholar 

  28. M. R. Flannery and E. Oks, Phys. Rev. A: At., Mol., Opt. Phys. 73, 013405 (2006).

    Article  ADS  Google Scholar 

  29. M. F. V. Lundsgaard, Z. Chen, C. D. Lin, and N. Toshima, Phys. Rev. A: At., Mol., Opt. Phys. 51, 1347 (1995).

    Article  ADS  Google Scholar 

  30. J. Macek and S. Y. Ovchinnikov, Phys. Rev. Lett. 69, 2357 (1992).

    Article  ADS  Google Scholar 

  31. M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

    Article  ADS  Google Scholar 

  32. T. Xia, X. L. Zhang, and M. Saffman, Phys. Rev. A: At., Mol., Opt. Phys. 88, 062337 (2013).

    Article  ADS  Google Scholar 

  33. I. I. Fabrikant and V. S. Lebedev, J. Phys. B: At., Mol., Opt. Phys. 33, 1521 (2000).

    Article  ADS  Google Scholar 

  34. A. A. Narits, E. S. Mironchuk, and V. S. Lebedev, J. Exp. Theor. Phys. 117 (4), 607 (2013).

    Article  ADS  Google Scholar 

  35. A. A. Narits, E. S. Mironchuk, and V. S. Lebedev, J. Phys. B: At., Mol., Opt. Phys. 47, 015202 (2014).

    Article  ADS  Google Scholar 

  36. C. Desfrançois, Phys. Rev. A: At., Mol., Opt. Phys. 51, 3667 (1995).

    Article  Google Scholar 

  37. I. I. Fabrikant, J. Phys. B: At., Mol., Opt. Phys. 31, 2921 (1998).

    Article  ADS  Google Scholar 

  38. I. I. Fabrikant and M. I. Chibisov, Phys. Rev. A: At., Mol., Opt. Phys. 61, 022718 (2000).

    Article  ADS  Google Scholar 

  39. E. Yu. Buslov and B. A. Zon, Phys. Rev. A: At., Mol., Opt. Phys. 85, 042709 (2012).

    Article  ADS  Google Scholar 

  40. V. S. Lebedev and A. A. Narits, in Atomic Processes in Basic and Applied Physics, Ed. by V. Shevelko and H. Tawara (Springer-Verlag, Berlin, 2012), Chap. 9, p. 211.

  41. V. S. Lebedev and A. A. Narits, J. Exp. Theor. Phys. 117 (4), 593 (2013).

    Article  ADS  Google Scholar 

  42. V. S. Lebedev and A. A. Narits, Chem. Phys. Lett. 582, 10 (2013).

    Article  ADS  Google Scholar 

  43. E. Fermi, Nuovo Cimento 11, 157 (1934).

    Article  Google Scholar 

  44. A. Omont, J. Phys. (Paris) 38, 1343 (1977).

    Article  Google Scholar 

  45. J. Derouard and M. Lombardi, J. Phys. B: At., Mol., Opt. Phys. 11, 3875 (1978).

    Article  ADS  Google Scholar 

  46. E. de Prunelé and J. Pascale, J. Phys. B: At., Mol., Opt. Phys. 12, 2511 (1979).

    Article  ADS  Google Scholar 

  47. M. R. Flannery, Ann. Phys. (New York) 61, 465 (1970).

    Article  ADS  Google Scholar 

  48. F. Gounand and L. Petitjean, Phys. Rev. A: At., Mol., Opt. Phys. 30, 61 (1984).

    Article  ADS  Google Scholar 

  49. V. S. Lebedev and V. S. Marchenko, Sov. Phys. JETP 61 (3), 443 (1985).

    Google Scholar 

  50. V. S. Lebedev and V. S. Marchenko, Sov. Phys. JETP 64 (2), 251 (1986).

    Google Scholar 

  51. V. S. Lebedev and V. S. Marchenko, J. Phys. B: At., Mol., Opt. Phys. 20, 6041 (1987).

    Article  ADS  Google Scholar 

  52. B. Kaulakys, J. Phys. B: At., Mol., Opt. Phys. 18, L167 (1985).

    Article  ADS  Google Scholar 

  53. B. P. Kaulakys, Sov. Phys. JETP 64 (2), 229 (1986).

    Google Scholar 

  54. V. S. Lebedev, J. Phys. B: At., Mol., Opt. Phys. 25, L131 (1992).

    Article  ADS  Google Scholar 

  55. V. S. Lebedev and I. I. Fabrikant, Phys. Rev. A: At., Mol., Opt. Phys. 54, 2888 (1996).

    Article  ADS  Google Scholar 

  56. V. S. Lebedev and I. I. Fabrikant, J. Phys. B: At., Mol., Opt. Phys. 30, 2649 (1997).

    Article  ADS  Google Scholar 

  57. V. S. Lebedev, J. Phys. B: At., Mol., Opt. Phys. 31, 1579 (1998).

    Article  ADS  Google Scholar 

  58. E. G. Layton and M. A. Morrison, Phys. Rev. A: At., Mol., Opt. Phys. 63, 052711 (2001).

    Article  ADS  Google Scholar 

  59. V. S. Lebedev, J. Phys. B: At., Mol., Opt. Phys. 24, 1977 (1991).

    Article  ADS  Google Scholar 

  60. R. K. Janev and A. A. Mihajlov, Phys. Rev. A: At., Mol., Opt. Phys. 20, 1890 (1979).

    Article  ADS  Google Scholar 

  61. V. A. Ivanov, V. S. Lebedev, and V. S. Marchenko, Sov. Phys. JETP 67 (11), 2225 (1988).

    Google Scholar 

  62. V. A. Ivanov, V. S. Lebedev, and V. S. Marchenko, Sov. Tech. Phys. Lett. 14 (9), 686 (1988).

    Google Scholar 

  63. R. K. Janev and A. A. Mihajlov, Phys. Rev. A: At., Mol., Opt. Phys. 21, 819 (1980).

    Article  ADS  Google Scholar 

  64. V. S. Lebedev, J. Phys. B: At., Mol., Opt. Phys. 24, 1993 (1991).

    Article  ADS  Google Scholar 

  65. J. B. Delos, Rev. Mod. Phys. 53, 287 (1981).

    Article  ADS  Google Scholar 

  66. E. A. Solov’ev, Sov. Phys.—Usp. 32 (3), 228 (1989).

    Article  ADS  Google Scholar 

  67. V. A. Smirnov, Opt. Spektrosk. 37, 407 (1974).

    Google Scholar 

  68. A. P. Hickman, J. Phys. B: At., Mol., Opt. Phys. 14, L419 (1981).

    Article  ADS  Google Scholar 

  69. V. S. Lebedev, V. S. Marchenko, and S. I. Yakovlenko, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 2395 (1981).

    Google Scholar 

  70. B. P. Kaulakys, Litov. Fiz. Sb. 22, 3 (1982).

    Google Scholar 

  71. V. S. Lebedev and V. S. Marchenko, Sov. Phys. JETP 57 (5), 946 (1983).

    Google Scholar 

  72. V. S. Lebedev and V. S. Marchenko, Khim. Fiz. 3, 210 (1984).

    Google Scholar 

  73. F. Gounand and L. Petitjean, Phys. Rev. A: At., Mol., Opt. Phys. 32, 793 (1985).

    Article  ADS  Google Scholar 

  74. M. J. Seaton, Rep. Prog. Phys. 46, 167 (1983)

    Article  ADS  Google Scholar 

  75. M. J. Seaton, Comp. Phys. Commun. 146, 225, 250, 254 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  76. A. Z. Devdariani, V. N. Ostrovskii, Yu. N. Sebyakin, Sov. Phys. JETP 44 (3), 477 (1975)

    ADS  Google Scholar 

  77. A. Z. Devdariani, V. N. Ostrovskii, and Yu. N. Sebyakin, Sov. Phys. JETP 46 (2), 215 (1977)

    ADS  Google Scholar 

  78. A. Z. Devdariani, V. N. Ostrovskii, and Yu. N. Sebyakin, Sov. Phys. JETP 49 (2), 266 (1979).

    ADS  Google Scholar 

  79. A. A. Radtsig and B. M. Smirnov, Sov. Phys. JETP 33, 282 (1971).

    ADS  Google Scholar 

  80. V. S. Lebedev, J. Exp. Theor. Phys. 76 (1), 27 (1993).

    ADS  Google Scholar 

  81. T. Andersen, Phys. Rep. 394, 157 (2004).

    Article  ADS  Google Scholar 

  82. S. Chattopadhyay, B. K. Mani, and D. Angom, Phys. Rev. A: At., Mol., Opt. Phys. 89, 022506 (2014).

    Article  ADS  Google Scholar 

  83. J. Mitroy and J. Y. Zhang, Mol. Phys. 108, 1999 (2010).

    Article  ADS  Google Scholar 

  84. S. O. Danielache, S. Tomoya, A. Kondorsky, I. Tokue, and S. Nanbu, J. Chem. Phys. 140, 044319 (2014).

    Article  ADS  Google Scholar 

  85. R. N. Compton and N. I. Hammer, Advances in Gas Phase Ion Chemistry (Elsevier, Amsterdam, The Netherlands, 2001), Vol. 4, p. 257.

    Google Scholar 

  86. L. Suess, Y. Liu, R. Parthasarathy, and F. B. Dunning, J. Chem. Phys. 122, 124315 (2005).

    Article  ADS  Google Scholar 

  87. M. Hamamda, P. Pillet, H. Lignier, and D. Comparat, New J. Phys. 17, 045018 (2015).

    Article  ADS  Google Scholar 

  88. M. Cannon, C. H. Wang, and F. B. Dunning, Chem. Phys. Lett. 479, 30 (2009).

    Article  ADS  Google Scholar 

  89. C. O. Reinhold, S. Yoshida, and F. B. Dunning, J. Chem. Phys. 134, 174305 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Lebedev.

Additional information

Original Russian Text © E.S. Mironchuk, A.A. Narits, V.S. Lebedev, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 5, pp. 914–930.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironchuk, E.S., Narits, A.A. & Lebedev, V.S. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s 2) and Sr(5s 2) atoms. J. Exp. Theor. Phys. 121, 799–812 (2015). https://doi.org/10.1134/S1063776115110060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115110060

Keywords

Navigation