Skip to main content

Spectroscopy of Radiative Decay Processes in Heavy Rydberg Alkali Atomic Systems

  • Conference paper
  • First Online:
Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics

Abstract

We present the results of studying the radiation decay processes and computing the probabilities and oscillator strengths of radiative transitions in spectra of heavy Rydberg alkali-metal atoms. All calculations of the radiative decay (transitions) probabilities have been carried out within the generalized relativistic energy approach (which is based on the Gell-Mann and Low S-matrix formalism) and the relativistic many-body perturbation theory with using the optimized one-quasiparticle representation and an accurate accounting for the critically important exchange-correlation effects as the perturbation theory second and higher orders ones. The precise data on spectroscopic parameters (energies, reduced dipole transition matrix elements, amplitude transitions) of the radiative transitions nS1/2→n′P1/2,3/2 (n = 5, 6; n′ = 10–70), nP1/2,3.2→n′D3/2,5/2 (n = 5, 6; n′ = 10–80) in the Rydberg Rb, Cs spectra and the transitions 7S1/2-nP1/2,3/2, 7P1/2,3.2-nD3/2,5/2 (n = 20–80) in the Rydberg francium spectrum are presented. The obtained results are analyzed and discussed from viewpoint of the correct accounting for the relativistic and exchange-correlation effects. It has been shown that theoretical approach used provides an effective accounting of the multielectron exchange-correlation effects, including effect of essentially non-Coulomb grouping of Rydberg levels and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin W (2004) NIST spectra database, version 2.0. NIST, Washington. http://physics.nist.gov.asd

  2. Moore C (1987) NBS spectra database. NBS, Washington

    Google Scholar 

  3. Weiss A (1977) J Quant Spectrosc Radiat Transf 18:481; Phys Scripta T65:188 (1993)

    Google Scholar 

  4. Nadeem A, Haq SU (2010) Phys Rev A 81:063432; (2011) Phys Rev A 83:063404

    Google Scholar 

  5. Simsarian JE, Orozco LA, Sprouse GD, Zhao WZ (1998) Phys Rev A 57:2448

    Article  CAS  Google Scholar 

  6. Curtis L (1995) Phys Rev A 51:4574

    Google Scholar 

  7. Li Y, Pretzler G, Fill EE (1995) Phys Rev A 52:R3433–R3435

    Article  CAS  PubMed  Google Scholar 

  8. Feng Z-G, Zhang L-J, Zhao J-M, Liand C-Y, Jia S-T (2009) J Phys B At Mol Opt Phys 42:145303

    Article  CAS  Google Scholar 

  9. Marinescu M, Vrinceanu D, Sadeghpour HR (1998) Phys Rev A 58:R4259

    Article  CAS  Google Scholar 

  10. Safronova UI, Johnson W, Derevianko A (1999) Phys Rev A 60:4476; Dzuba V, Flambaum V, Safranova MS (2006) Phys Rev A 73:02211

    Google Scholar 

  11. Grant IP (2007) Relativistic quantum theory of atoms and molecules, theory and computation. In: Springer series on atomic, optical, and plasma physics, vol 40. Springer, Berlin, pp 587–626

    Google Scholar 

  12. Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems. Astroprint, Odessa, p 700

    Google Scholar 

  13. Wilson S (2007) Recent advances in theoretical physics and chemistry systems. In: Maruani J, Lahmar S, Wilson S, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 16. Springer, Berlin, pp 11–80

    Google Scholar 

  14. Feller D, Davidson ER (1981) J Chem Phys 74:3977

    Article  CAS  Google Scholar 

  15. Froelich P, Davidson ER, Brändas E (1983) Phys Rev A 28:2641

    Article  CAS  Google Scholar 

  16. Rittby M, Elander N, Brändas E (1983) Int J Quantum Chem 23:865

    Article  CAS  Google Scholar 

  17. Wang YA, Yam CY, Chen YK, Chen GH (2011) J Chem Phys 134:241103

    Google Scholar 

  18. Maruani J (2016) J Chin Chem Soc 63:33

    Article  CAS  Google Scholar 

  19. Pavlov R, Mihailov L, Velchev C, Dimitrova-Ivanovich M,  Stoyanov Z, Chamel N, Maruani J (2010) J Phys Conf Ser 253:012075

    Google Scholar 

  20. Dietz K, Heβ BA (1989) Phys Scripta 39:682

    Article  Google Scholar 

  21. Kohn JW, Sham LJ (1964) Phys Rev A 140:1133

    Article  Google Scholar 

  22. Gross EG, Kohn W (2005) Exchange-correlation functionals in density functional theory. Plenum, New York

    Google Scholar 

  23. Froese Fischer C, Tachiev G, Irimia A (2006) GAtom Data Nucl Data Tables 92:607

    Article  CAS  Google Scholar 

  24. Cheng K, Kim Y, Desclaux J (1979) At Data Nucl Data Tables 24:11

    Article  Google Scholar 

  25. Safranova UI, Safranova MS, Johnson W (2005) Phys Rev A 71:052506

    Article  CAS  Google Scholar 

  26. Ternovsky EV, Antoshkina OA, Florko TA, Tkach TB (2017) Photoelectronics 26:139

    Google Scholar 

  27. Indelicato P, Desclaux JP (1993) Phys Scripta T 46:110

    Article  Google Scholar 

  28. Dzuba VA, Flambaum VV, Sushkov OP (1995) Phys Rev A 51:3454

    Article  CAS  PubMed  Google Scholar 

  29. Sapirstein J (1998) Rev Modern Phys 70:55

    Article  CAS  Google Scholar 

  30. Piotrowicz M, MacCormick C, Kowalczyk A et al (2011) arXiv:1103.0109v2 [quant-ph]; Beterov I, Mansell CW, Yakshina EA et al (2012) arXiv:1207.3626v1 [physics.atom-ph]

  31. Dyachkov LG, Pankratov PM (1994) J Phys B 27(3):461; Piotrowicz M, MacCormick C, Kowalczyk A, Bergamini S, Yakshina EA (2011) New Journ Phys 13:093012

    Google Scholar 

  32. Quinet P, Argante C, Fivet V, Terranova1 C, Yushchenko AV, Biémont É (2007) Astrophys Astron 474:307

    Google Scholar 

  33. Biémont É, Fivet V, Quinet P (2004) J Phys B At Mol Opt Phys 37:4193

    Article  CAS  Google Scholar 

  34. Glushkov AV (1991) Opt Spectrosc 70:555

    Google Scholar 

  35. Glushkov AV (1990) Soviet Phys J 33(1):1

    Article  Google Scholar 

  36. Khetselius OY (2009) Int J Quantum Chem 109:3330

    Article  CAS  Google Scholar 

  37. Khetselius OY (2009) Phys Scripta T135:014023

    Article  CAS  Google Scholar 

  38. Malinovskaya SV, Glushkov AV, Khetselius OY, Svinarenko AA, Mischenko EV, Florko TA (2009) Int J Quant Chem 109(4):3325

    Article  CAS  Google Scholar 

  39. Glushkov AV, Loboda AV, Gurnitskaya EP, Svinarenko AA (2009) Phys Scripta T135:014022

    Article  CAS  Google Scholar 

  40. Glushkov AV, Khetselius OY, Svinarenko AA (2013) Phys Scripta T153:014029

    Article  CAS  Google Scholar 

  41. Svinarenko AA (2014) J Phys Conf Ser 548:012039

    Article  Google Scholar 

  42. Glushkov AV, Mansarliysky VF, Khetselius OY, Ignatenko AV, Smirnov A, Prepelitsa GP (2017) J Phys Conf Ser 810:012034

    Article  CAS  Google Scholar 

  43. Glushkov AV, Loboda AV (2007) J Appl Spectrosc 74:305. (Springer)

    Article  CAS  Google Scholar 

  44. Malinovskaya SV, Glushkov AV, Khetselius OY, Loboda AV, Lopatkin YuM, Svinarenko AA, Nikola LV, Perelygina TB (2011) Int J Quantum Chem 111:288

    Article  CAS  Google Scholar 

  45. Glushkov AV, Khetselius OY, Loboda AV, Ignatenko AV, Svinarenko AA, Korchevsky DA, Lovett L (2008) Spectral line shapes. AIP Conf Proc 1058:175

    Google Scholar 

  46. Khetselius OY (2012) J Phys Conf Ser 397:012012

    Article  CAS  Google Scholar 

  47. Khetselius OY, Florko TA, Svinarenko AA, Tkach TB (2013) Phys Scripta T153:014037

    Article  CAS  Google Scholar 

  48. Khetselius OY (2008) Spectral line shapes. AIP Conf Proc 1058:363

    Article  CAS  Google Scholar 

  49. Khetselius OY, Glushkov AV, Gurnitskaya EP, Loboda AV, Mischenko EV, Florko T, Sukharev D (2008) Spectral line shapes. AIP Conf Proc 1058:231

    Google Scholar 

  50. Khetselius OY (2007) Photoelectronics 16:129

    Google Scholar 

  51. Khetselius OY, Gurnitskaya EP (2006) Sens Electron Microsyst Technol N 3:35

    Google Scholar 

  52. Khetselius OY, Gurnitskaya EP (2006) Sens Electron Microsyst Technol N 2:25

    Google Scholar 

  53. Johnson WR, Lin CD, Cheng KT (1980) Phys Scr 21:409

    Article  CAS  Google Scholar 

  54. Johnson WR, Sapistein J, Blundell S (1988) Phys Rev A 37:307

    Article  CAS  Google Scholar 

  55. Khetselius OY (2011) Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint, Odessa

    Google Scholar 

  56. Hibbert A, Hansen JE (1994) J Phys B At Mol Opt Phys 27:3325

    Google Scholar 

  57. Braun MA, Dmitriev YuYu, Labzovsky LN (1969) JETP 57:2189

    CAS  Google Scholar 

  58. Tolmachev VV (1969) Adv Quantum Chem 4:331

    Google Scholar 

  59. Ivanov LN, Ivanova EP (1979) At Data Nucl Data Tables 24:95

    Article  CAS  Google Scholar 

  60. Driker MN, Ivanova EP, Ivanov LN, Shestakov AF (1982) J Quant Spectrosc Radiat Transf 28:531

    Article  CAS  Google Scholar 

  61. Ivanov LN, Letokhov VS (1985) Com Mod Phys D At Mol Phys 4:169

    Google Scholar 

  62. Vidolova-Angelova E, Ivanov LN, Ivanova EP, Angelov DA (1986) J Phys B At Mol Opt Phys 19:2053

    Article  CAS  Google Scholar 

  63. Glushkov AV (2006) Relativistic and correlation effects spectra of atomic systems. Astroprint, Odessa

    Google Scholar 

  64. Ivanov LN, Ivanova EP, Aglitsky EV (1988) Phys Rep 166:315

    Google Scholar 

  65. Ivanova EP, Ivanov LN, Glushkov AV, Kramida AE (1985) Phys Scripta 32:513

    Article  CAS  Google Scholar 

  66. Ivanova EP, Glushkov AV (1986) J Quant Spectrosc Radiat Transf 36:127

    Article  CAS  Google Scholar 

  67. Ivanov LN, Ivanova EP, Knight L (1993) Phys Rev A 48:4365

    Article  CAS  PubMed  Google Scholar 

  68. Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33

    Article  CAS  Google Scholar 

  69. Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow, pp 58–160

    Google Scholar 

  70. Glushkov AV (2012) Quantum systems in chemistry and physics: progress in methods and applications. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 26. Springer, pp 231–252

    Google Scholar 

  71. Glushkov AV, Ivanov LN (1993) J Phys B At Mol Opt Phys 26:L379

    Article  CAS  Google Scholar 

  72. Glushkov AV (1992) JETP Lett 55:97

    Google Scholar 

  73. Khestelius OYu (2008) Hyperfine structure of atomic spectra. Astroprint, Odessa, 210p

    Google Scholar 

  74. Svinarenko AA, Glushkov AV, Khetselius OY, Ternovsky VB, Dubrovskaya YV, Kuznetsova AA, Buyadzhi VV (2017) In: Orjuela JEA (ed) Rare earth element. InTech, pp 83–104

    Google Scholar 

  75. Glushkov AV, Khetselius OY, Svinarenko AA, Buyadzhi VV, Ternovsky VB, Kuznetsova, Bashkarev PG (2017) In: Uzunov DI (ed) Recent studies in perturbation theory. InTech, pp 131–150

    Google Scholar 

  76. Glushkov AV, Ambrosov SV, Loboda AV, Chernyakova Yu G, Svinarenko AA, Khetselius OY (2004) Nucl Phys A Nucl Hadr Phys 734:21

    Google Scholar 

  77. Glushkov AV, Malinovskaya SV, Sukharev DE, Khetselius OY, Loboda AV, Lovett L (2009) Int J Quantum Chem 109:1717

    Article  CAS  Google Scholar 

  78. Glushkov AV (2013) Advances in quantum methods and applications in chemistry, physics, and biology. In: Hotokka M, Maruani J, Brändas E, Delgado-Barrio G (ed) Series: Progress in theoretical chemistry and physics, vol 27B. Springer, pp 161–178

    Google Scholar 

  79. Glushkov AV, Khetselius OY, Svinarenko AA, Prepelitsa GP (2010) In: Duarte FJ (ed) Coherence and ultrashort pulsed emission. InTech, Rijeka, pp 159–186

    Google Scholar 

  80. Buyadzhi VV, Glushkov AV, Lovett L (2014) Photoelectronics 23:38

    Google Scholar 

  81. Buyadzhi VV, Glushkov AV, Mansarliysky VF, Ignatenko AV, Svinarenko AA (2015) Sens Electron Microsyst Technol 12(4):27

    Article  Google Scholar 

  82. Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 18. Springer, pp 525–541

    Google Scholar 

  83. Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Eur Phys J Spec Top 160:195

    Article  Google Scholar 

  84. Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Mol Phys 106:1257

    Article  CAS  Google Scholar 

  85. Glushkov AV, Khetselius OY, Svinarenko AA (2012) Advances in the theory of quantum systems in chemistry and physics. In: Hoggan P, Maruani J, Brandas E, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 22. Springer, pp 51–68

    Google Scholar 

  86. Glushkov AV, Khetselius OY, Lovett L (2010) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures. In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Series: Progress in theoretical chemistry and physics, vol 20. Springer, pp 125–152

    Google Scholar 

  87. Glushkov AV, Khetselius OY, Loboda AV, Svinarenko AA (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 18. Springer, pp 543–560

    Google Scholar 

  88. Glushkov AV, Khetselius O, Gurnitskaya E, Loboda A, Florko T, Sukharev D, Lovett L (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout P, Maruani J, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 18. Springer, pp 507–524

    Google Scholar 

  89. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OY (2006) Recent advances in theoretical physics and chemistry systems. In: Julien JP, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 15. Springer, pp 285–299

    Google Scholar 

  90. Malinovskaya SV, Glushkov AV, Dubrovskaya YV, Vitavetskaya LA (2006) Recent advances in theoretical physics and chemistry systems. In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 15. Springer, pp 301–307

    Google Scholar 

  91. Khetselius OY (2012) Quantum systems in chemistry and physics: progress in methods and applications. In: Nishikawa K, Maruani J, Brandas E, Delgado-Barrio G, Piecuch P (eds) Series: Progress in theoretical chemistry and physics, vol 26. Springer, pp 217–229

    Google Scholar 

  92. Khetselius OY (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 29. Springer, pp 55–76

    Google Scholar 

  93. Glushkov AV, Svinarenko AA, Khetselius OY, Buyadzhi VV, Florko TA, Shakhman AN (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 29. Springer, pp 197–217

    Google Scholar 

  94. Khetselius OY, Zaichko PA, Smirnov AV, Buyadzhi VV, Ternovsky VB, Florko TA, Mansarliysky VF (2017) Quantum systems in physics, chemistry, and biology. In: Tadjer A, Pavlov R, Maruani J, Brändas E, Delgado-Barrio G (eds) Series: Progress in theoretical chemistry and physics, vol 30. Springer, pp 271–281

    Google Scholar 

  95. Glushkov AV, Rusov VD, Ambrosov SV, Loboda AV (2003) New projects and new lines of research in nuclear physics. In: Fazio G, Hanappe F (eds). World Scientific, Singapore, pp 126–132

    Google Scholar 

  96. Glushkov AV, Malinovskaya SV, Loboda AV, Shpinareva IM, Prepelitsa GP (2006) J Phys Conf Ser 35:420

    Article  CAS  Google Scholar 

  97. Glushkov AV, Malinovskaya SV, Chernyakova YG, Svinarenko AA (2004) Int J Quantum Chem 99:889

    Article  CAS  Google Scholar 

  98. Glushkov AV, Ambrosov SV, Ignatenko AV, Korchevsky DA (2004) Int J Quantum Chem 99:936

    Google Scholar 

  99. Glushkov AV, Ignatenko AV, Khetselius OY, Ternovsky VB (2017) Spectroscopy of Rydberg atoms and relativistic quantum chaos, OSENU, Odessa, p 152

    Google Scholar 

  100. Ternovsky VB, Buyadzhi VV, Gurskaya MY, Kuznetsova AA (2015) Preprint OSENU, NAM-3 (Odessa, 2015), p 32; Preprint OSENU, OSENU, NAM-4 (Odessa, 2015), p 36

    Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to Prof. J. Maruani and Dr. Y. A. Wang for invitation to make contributions on the QSCP-XVI workshop (Vancouver, Canada). The useful comments of the anonymous referees are very much acknowledged too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin B. Ternovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ternovsky, V.B., Glushkov, A.V., Khetselius, O.Y., Gurskaya, M.Y., Kuznetsova, A.A. (2018). Spectroscopy of Radiative Decay Processes in Heavy Rydberg Alkali Atomic Systems. In: Wang, Y., Thachuk, M., Krems, R., Maruani, J. (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-74582-4_13

Download citation

Publish with us

Policies and ethics