Skip to main content
Log in

Stability of the lepton bag model based on the Kerr–Newman solution

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We show that the lepton bag model considered in our previous paper [10], generating the external gravitational and electromagnetic fields of the Kerr–Newman (KN) solution, is supersymmetric and represents a BPS-saturated soliton interpolating between the internal vacuum state and the external KN solution. We obtain Bogomolnyi equations for this phase transition and show that the Bogomolnyi bound determines all important features of this bag model, including its stable shape. In particular, for the stationary KN solution, the BPS bound provides stability of the ellipsoidal form of the bag and the formation of the ring–string structure at its border, while for the periodic electromagnetic excitations of the KN solution, the BPS bound controls the deformation of the surface of the bag, reproducing the known flexibility of bag models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Israel, Phys. Rev. D: Part. Fields 2, 641 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. T. Newman and A. I. Janis, J. Math. Phys. 6, 915 (1965).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. B. Carter, Phys. Rev. 174, 1559 (1968).

    Article  ADS  MATH  Google Scholar 

  4. A. Ya. Burinskii, Sov. Phys. JETP 39, 193 (1974).

    ADS  MathSciNet  Google Scholar 

  5. D. D. Ivanenko and A. Ya. Burinskii, Russ. Phys. J. 18 (5), 721 (1975).

    Google Scholar 

  6. A. Burinskii, Phys. Rev. D: Part. Fields 52, 5826 (1995); A. Burinskii, arXiv:hep-th/9504139.

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Burinskii, J. Phys.: Conf. Ser. 532, 012004 (2014); A. Burinskii, arXiv:1410.2462.

    ADS  Google Scholar 

  8. A. Burinskii, J. Phys. A: Math. Theor. 43, 392001 (2010); A. Burinskii, arXiv:1003.2928

    Article  MathSciNet  Google Scholar 

  9. A. Burinskii, Int. J. Mod. Phys. A 29, 1450133 (2014), A. Burinskii, arXiv:1410.2888.

    Article  ADS  Google Scholar 

  10. H. B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973).

    Article  ADS  Google Scholar 

  11. A. Burinskii, J. Exp. Theor. Phys. 121 (2), 194 (2015).

    Article  ADS  Google Scholar 

  12. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D: Part. Fields 9, 3471 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  13. W. A. Bardeen, M. S. Chanowitz, S. D. Drell, M. Weinstein, and T.-M. Yan, Phys. Rev. D: Part. Fields 11, 1094 (1974).

    Article  ADS  Google Scholar 

  14. G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10, 1842 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  15. C. A. López, Phys. Rev. D: Part. Fields 30, 313 (1984).

    Article  ADS  Google Scholar 

  16. A. Burinskii, in Proceedings of the International Conference on the Quantum Field Theory and Gravity (QFTG 2014), Tomsk, July 28–August 3, 2014 (Tomsk, 2014); A. Burinskii, arXiv:1502.00736.

    Google Scholar 

  17. A. Burinskii, Gravitation Cosmol. 21, 28 (2015), A. Burinskii, arXiv:1404.5947.

    Article  ADS  MathSciNet  Google Scholar 

  18. Xinrui Hou, A. Losev, and M. Shifman, Phys. Rev. D: Part. Fields 61, 085005 (2000); Xinrui Hou, A. Losev, and M. Shifman, arXiv:hep-th/9910071.

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, New Jersey, United States, 1983).

    MATH  Google Scholar 

  20. J. R. Morris, Phys. Rev. D: Part. Fields 53, 2078 (1996); J. R. Morris, arXiv:hep-ph/9511293.

    Article  ADS  Google Scholar 

  21. M. Cvetic, F. Quevedo, and S. J. Rey, Phys. Rev. Lett. 67, 1836 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. G. W. Gibbons and P. K. Townsend, Phys. Rev. Lett. 83, 1727 (1999). doi: 10.1103/PhysRevLett.83.1727; G. W. Gibbons and P. K. Townsend, arXiv:hepth/9905196.

    Article  ADS  Google Scholar 

  23. R. C. Giles, Phys. Rev. D: Part. Fields 70, 1670 (1976).

    Article  ADS  Google Scholar 

  24. P. Vinciarelli, Nuovo Cimento Lett. 4, 905 (1972).

    Article  Google Scholar 

  25. P. A. M. Dirac Proc. R. Soc. London, Ser. A 268, 57 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Burinskii, Theor. Math. Phys. 177, 1492 (2013); A. Burinskii, arXiv:1307.5021.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Sen, Nucl. Phys. B 388, 457 (1992); A. Sen, arXiv:hep-th/9206016.

    Article  ADS  Google Scholar 

  28. A. Burinskii, J. Phys.: Conf. Ser. 361, 012032 (2012). doi: 10.1088/1742-6596/361/1/012032; A. Burinskii, arXiv:1109.3872.

    ADS  Google Scholar 

  29. A. Dabholkar, J. P. Gauntlett, J. A. Harvey, and D. Waldram, Nucl. Phys. B 474, 85 (1996). doi: 10.1016/0550-3213(96)00266-0; A. Dabholkar, J. P. Gauntlett, J. A. Harvey, and D. Waldram, arXiv:hep-th/9511053.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. G. Horowitz and A. Steif, Phys. Rev. Lett. 64, 260 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Cvetic and A. A. Tseytlin, Phys. Rev. D: Part. Fields 53, 5619 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Cvetic and A. A. Tseytlin, Phys. Rev. D: Part. Fields 55, 3907(E) (1997). doi: 10.1103/PhysRevD.53.5619.

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Burinskii, Phys. Rev. D: Part. Fields 68, 105004 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  34. H. I. Arcos and J. G. Pereira, in Beyond the Quantum, Ed. by Th. M. Nieuwenhuizen, V. Špicka, B. Mehmani, M. J. Aghdami, and A. Yu. Khrennikov (World Scientific, Singapore, 2007), p. 308.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Burinskii.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burinskii, A. Stability of the lepton bag model based on the Kerr–Newman solution. J. Exp. Theor. Phys. 121, 819–827 (2015). https://doi.org/10.1134/S1063776115110023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115110023

Keywords

Navigation