Skip to main content
Log in

Gravitating lepton bag model

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, am, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ‘t Hooft, Nucl. Phys. B 335, 138 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  2. C. F. E. Holzhey and F. Wilczek, Nucl. Phys. B 380, 447 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. A. Sen, Mod. Phys. Lett. A 10, 2081 (1995).

    Article  ADS  Google Scholar 

  4. B. Carter, Phys. Rev. 174, 1559 (1968).

    Article  MATH  ADS  Google Scholar 

  5. V. I. Dokuchaev and Yu. N. Eroshenko, J. Exp. Theor. Phys. 117, 72 (2013).

    Article  ADS  Google Scholar 

  6. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D: Part. Fields 9, 3471 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  7. W. A. Bardeen, M. S. Chanowitz, S. D. Drell, M. Weinstein, and T.-M. Yang, Phys. Rev. D: Part. Phys. 11, 1094 (1974).

    Article  ADS  Google Scholar 

  8. H. Keres, Sov. Phys. JETP 25, 504 (1967).

    ADS  Google Scholar 

  9. W. Israel, Phys. Rev. D: Part. Fields 2, 641 (1970).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. V. Hamity, Phys. Lett. A 56, 77 (1976).

    Article  ADS  Google Scholar 

  11. C. A. López, Phys. Rev. D: Part. Fields 30, 313 (1984).

    Article  ADS  Google Scholar 

  12. A. Ya. Burinskii, Sov. Phys. JETP 39, 193 (1974).

    MathSciNet  ADS  Google Scholar 

  13. D. D. Ivanenko and A. Ya. Burinskii, Sov. Phys. J. 18 (5), 721 (1975).

  14. M. Gürses and F. Gürsey, J. Math. Phys. 16, 2385 (1975).

    Article  ADS  Google Scholar 

  15. A. Burinskii, J. Phys. A: Math. Theor. 43, 392001 (2010); A. Burinskii, arXiv:1003.2928.

    Article  MathSciNet  Google Scholar 

  16. A. Burinskii, Int. J. Mod. Phys. A 29, 1450133 (2014).

    Article  ADS  Google Scholar 

  17. A. Burinskii, E. Elizalde, S. R. Hildebrandt, and G. Magli, Phys. Rev. D: Part. Fields 65, 064039 (2002); A. Burinskii, E. Elizalde, S. R. Hildebrandt, and G. Magli, arXiv:gr-qc/0109085.

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Burinskii, Gravitation Cosmol. 21 (1), 28 (2015); A. Burinskii, arXiv:1404.5947.

  19. R. C. Giles, Phys. Rev. D: Part. Fields 70, 1670 (1976).

    Article  ADS  Google Scholar 

  20. A. Burinskii, J. Phys.: Conf. Ser. 532, 012004 (2014); A. Burinskii, arXiv:1410.2462.

    ADS  Google Scholar 

  21. A. Burinskii, J. Phys.: Conf. Ser. 361, 012032 (2012); A. Burinskii, arXiv:1109.3872.

    ADS  Google Scholar 

  22. J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, New Jersey, United States, 1983).

    MATH  Google Scholar 

  23. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

    Article  ADS  Google Scholar 

  24. G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10, 1842 (1969).

    Google Scholar 

  25. R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. A. Burinskii, Phys. Rev. D: Part. Fields 52, 5826 (1995); A. Burinskii, arXiv:hep-th/9504139.

    Article  MathSciNet  ADS  Google Scholar 

  27. E. Witten, Nucl. Phys. B 249, 557 (1985).

    Article  ADS  Google Scholar 

  28. H. B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973).

    Article  ADS  Google Scholar 

  29. A. Achucarro and T. Vachaspati, Phys. Rep. 327, 347 (2000); A. Achucarro and T. Vachaspati, arXiv:hepph/9904229.

    Article  ADS  Google Scholar 

  30. S. Coleman, Nucl. Phys. B 262 (2), 263 (1985).

  31. G. Rosen, J. Math. Phys. 9, 996 (1968). doi:10.1063/ 1.1664693

    Article  ADS  Google Scholar 

  32. A. Kusenko, Phys. Lett. B 405, 108 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Volkov and E. Wöhnert, Phys. Rev. D: Part. Fields 66, 085003 (2002).

    Article  ADS  Google Scholar 

  34. N. Graham, Phys. Rev. Lett. 98, 101801 (2007).

    Article  ADS  Google Scholar 

  35. P. S. Drell, arXiv:hep-ex/9701001.

  36. M. Shifman and A. Yung, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 125012 (2009). doi:10.1103/ PhysRevD.79.125012; M. Shifman and A. Yung, arXiv:0904.1035.

    Article  MathSciNet  Google Scholar 

  37. J. R. Morris, Phys. Rev. D: Part. Fields 53, 2078 (1996); J. R. Morris, arXiv:hep-ph/9511293.

    Article  ADS  Google Scholar 

  38. S. Einstein and R. Finkelstein, Phys. Rev. D: Part. Fields 15, 2721 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Burinskii, Theor. Math. Phys. 163, 782 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  40. Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. Freeman, San Francisco, California, United States, 1973), Vol. 3.

    Google Scholar 

  41. P. A. M. Dirac, Proc. R. Soc. London, Ser. A 268, 57 (1962).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. A. N. Tarakanov, in Report to Proceedings of the 5th International Conference Bolyai–Gauss–Lobachevsky: Non-Euclidean Geometry in Modern Physics (BGL-5), Minsk, Belarus, October 10–13, 2006 (Minsk, 2006); A. N. Tarakanov, arXiv:hep-th/0611149.

    Google Scholar 

  43. A. A. Deriglazov, B. F. Rizzuti, G. P. Z. Chauca, and P. S. Castro, J. Math. Phys. 53, 122303 (2012); A. A. Deriglazov, B. F. Rizzuti, G. P. Z. Chauca, and P. S. Castro, arXiv:1202.5757.

    Article  MathSciNet  ADS  Google Scholar 

  44. E. van Beveren, C. Dullemond, and T. A. Rijken, Phys. Rev. D: Part. Fields 30, 1103 (1984).

    Article  ADS  Google Scholar 

  45. A. Burinskii, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 70, 086006 (2004); A. Burinskii, arXiv:hepth/0406063.

    Article  MathSciNet  Google Scholar 

  46. G. Horowitz and A. Steif, Phys. Rev. Lett. 64, 260 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. A. Burinskii, Gen. Relativ. Gravitation 41, 2281 (2009); A. Burinskii, arXiv:0903.3162[gr-qc].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. A. Burinskii, Phys. Rev. D: Part. Fields 68, 105004 (2003); A. Burinskii, arXiv:hep-th/0308096.

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Burinskii, in Proceedings of the International Conference “Quantum Field Theory and Gravity” (QFTG 2014), Tomsk, Russia, July 28–August 3, 2014 (Tomsk, 2014).

    Google Scholar 

  50. Th. M. Nieuwenhuizen, in Beyond the Quantum, Ed. by Th. M. Nieuwenhuizen, B. Mehmani, V. Spicka, M. Jafar-Aghdami, and A. Yu. Khrennikov (World Scientific, Singapore, 2007), p. 332.

  51. M. Atiyah, G. Franchetti, and B. J. Schroers, http://arxiv.org/pdf/1412.5915.pdf.

  52. M. Atiyah, N. S. Manton, and B. J. Schroers, Proc. R. Soc. London, Ser. A 468, 1252 (2012).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Burinskii.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burinskii, A. Gravitating lepton bag model. J. Exp. Theor. Phys. 121, 194–205 (2015). https://doi.org/10.1134/S1063776115080038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115080038

Keywords

Navigation