Skip to main content
Log in

Pseudospin S = 1 formalism and skyrmion-like excitations in the three-body constrained extended Bose–Hubbard model

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We discuss the most prominent and intensively studied S = 1 pseudospin formalism for the extended bosonic Hubbard model (EBHM) with the on-site Hilbert space truncated to the three lowest occupation states n = 0, 1, 2. The EBHM Hamiltonian is a paradigmatic model for the highly topical field of ultracold gases in optical lattices. The generalized non-Heisenberg effective pseudospin Hamiltonian does provide a deep link with a boson system and a physically clear description of “the myriad of phases,” from uniform Mott insulating phases and density waves to two types of superfluids and supersolids. We argue that the 2D pseudospin system is prone to a topological phase separation and focus on several types of unconventional skyrmion-like topological structures in 2D boson systems, which have not been analyzed until now. The structures are characterized by a complicated interplay of insulating and two superfluid phases with a single- boson and two-boson condensation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B: Condens. Matter 40, 546 (1989), Subir Sachdev, Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 2001), O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. A. Malomed, T. Sowinski, and J. Zakrzewski, arXiv:1406.0181.

    Article  ADS  Google Scholar 

  2. Kwai-Kong Ng and Min-Fong Yang, Phys. Rev. B: Condens. Matter 83, 100511(R) (2011).

    Article  ADS  Google Scholar 

  3. Ehud Altman and Assa Auerbach, Phys. Rev. Lett. 89, 250404 (2002)

    Article  ADS  Google Scholar 

  4. Erez Berg, Emanuele G. Dalla Torre, Thierry Giamarchi, and Ehud Altman, Phys. Rev. B: Condens. Matter 77, 245119 (2008)

    Article  ADS  Google Scholar 

  5. L. Mazza, M. Rizzi, M. Lewenstein, and J. I. Cirac, Phys. Rev. A: At., Mol., Opt. Phys. 82, 043629 (2010).

    Article  ADS  Google Scholar 

  6. T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16, 569 (1956).

    Article  ADS  MATH  Google Scholar 

  7. C. D. Batista and G. Ortiz, Adv. Phys. 53, 1 (2004).

    Article  ADS  Google Scholar 

  8. P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

    Article  ADS  MATH  Google Scholar 

  9. T. Holstein and H. Primako, Phys. Rev. 58, 1098 (1940).

    Article  ADS  MATH  Google Scholar 

  10. A. S. Moskvin, Phys. Rev. B: Condens. Matter 84, 075116 (2011).

    Article  ADS  Google Scholar 

  11. A. S. Moskvin, J. Phys.: Condens. Matter 25, 085601 (2013).

    ADS  Google Scholar 

  12. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

    Book  Google Scholar 

  13. N. A. Mikushina and A. S. Moskvin, Phys. Lett. A 302, 8 (2002), N. A. Mikushina and A. S. Moskvin, arXiv:cond-mat/0111201.

    Article  ADS  MATH  Google Scholar 

  14. A. Knigavko, B. Rosenstein, and Y. F. Chen, Phys. Rev. B: Condens. Matter 60, 550 (1999).

    Article  ADS  Google Scholar 

  15. M. Blume, Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  16. H. W. Capel, Physica (Utrecht) 32, 966 (1966).

    Article  ADS  Google Scholar 

  17. J. E. Hirsch and S. Tang, Phys. Rev. B: Condens. Matter 40, 2179 (1989)

    Article  ADS  Google Scholar 

  18. J. E. Hirsch, in Polarons and Bipolarons in High-Tc Superconductors and Related Materials, Ed. by E. K. H. Salje, A. S. Alexandrov, and W. Y. Liang (Cambridge Univ. Press, Cambridge, 1995), p. 234.

  19. P. Sengupta and C. D. Batista, Phys. Rev. Lett. 98, 227201 (2007)

    Article  ADS  Google Scholar 

  20. P. Sengupta and C. D. Batista, J. Appl. Phys. 103, 07C709 (2008).

    Google Scholar 

  21. K. Wierschem, Y. Kato, Y. Nishida, C. D. Batista, and P. Sengupta, Phys. Rev. B: Condens. Matter 86, 201108(R) (2012).

    Article  ADS  Google Scholar 

  22. M. R. H. Khajehpour, Yung-Li Wang, and R. A. Kromhout, Phys. Rev. B: Solid State 12, 1849 (1975).

    Article  ADS  Google Scholar 

  23. J. Oitmaa and C. J. Hamer, Phys. Rev. B: Condens. Matter 77, 224435 (2008)

    Article  ADS  Google Scholar 

  24. C. J. Hamer, O. Rojas, and J. Oitmaa, Phys. Rev. B: Condens. Matter 81, 214424 (2010).

    Article  ADS  Google Scholar 

  25. R. S. Lapa and A. S. T. Pires, J. Magn. Magn. Mater. 327, 1 (2013)

    Article  ADS  Google Scholar 

  26. A. S. T. Pires, Solid State Commun. 152, 1838 (2012).

    Article  ADS  Google Scholar 

  27. N. Papanicolau, Phys. Lett. A 116, 89 (1986)

    Article  ADS  Google Scholar 

  28. N. Papanicolau, Nucl. Phys. 305, 367 (1988).

    Article  ADS  Google Scholar 

  29. J. Sasaki and F. Matsubara, J. Phys. Soc. Jpn. 66, 2138 (1997).

    Article  ADS  Google Scholar 

  30. A. A. Belavin and A. M. Polyakov, JETP Lett. 22 (10), 245 (1975).

    ADS  Google Scholar 

  31. A. B. Borisov, S. A. Zykov, N. A. Mikushina, and A. S. Moskvin, Phys. Solid State 44 (2), 324 (2002).

    Article  ADS  Google Scholar 

  32. Ar. Abanov and V. L. Pokrovsky, Phys. Rev. B: Condens. Matter 58, R8889 (1998)

    Article  ADS  Google Scholar 

  33. B. A. Ivanov, A. Y. Merkulov, V. A. Stephanovich, and C. E. Zaspel, Phys. Rev. B: Condens. Matter 74, 224422 (2006)

    Article  ADS  Google Scholar 

  34. E. G. Galkina, E. V. Kirichenko, B. A. Ivanov, and V. A. Stephanovich, Phys. Rev. B: Condens. Matter 79, 134439 (2009).

    Article  ADS  Google Scholar 

  35. A. M. Perelomov, Generalized Coherent States and Their Applications (Springer-Verlag, Berlin, 1986).

    Book  MATH  Google Scholar 

  36. R. A. Istomin and A. S. Moskvin, JETP Lett. 71 (8), 338 (2000).

    Article  ADS  Google Scholar 

  37. P. B. Wiegmann, Phys. Rev. Lett. 60, 821 (1988)

    Article  ADS  Google Scholar 

  38. B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 61, 467 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  39. X. G. Wen and A. Zee, Phys. Rev. Lett. 61, 1025 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  40. S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B: Condens. Matter 39, 2344 (1989)

    Article  ADS  Google Scholar 

  41. P. Voruganti and S. Doniach, Phys. Rev. B: Condens. Matter 41, 9358 (1990)

    Article  ADS  Google Scholar 

  42. R. J. Gooding, Phys. Rev. Lett. 66, 2266 (1991)

    Article  ADS  Google Scholar 

  43. S. Haas, F.-C. Zhang, F. Mila, and T. M. Rice, Phys. Rev. Lett. 77, 3021 (1996).

    Article  ADS  Google Scholar 

  44. E. C. Marino and M. B. Silva Neto, Phys. Rev. B: Condens. Matter 64, 092511 (2001)

    Article  ADS  Google Scholar 

  45. T. Morinari, Phys. Rev. B: Condens. Matter 65, 064513 (2002)

    Article  ADS  Google Scholar 

  46. T. Morinari, Phys. Rev. B: Condens. Matter 72, 104502 (2005)

    Article  ADS  Google Scholar 

  47. Z. Nazario and D. I. Santiago, Phys. Rev. Lett. 97, 197201 (2006).

    Article  ADS  Google Scholar 

  48. I. Raicevic, D. Popovic, C. Panagopoulos, L. Benfatto, M. B. Silva Neto, E. S. Choi, and T. Sasagawa, Phys. Rev. Lett. 106, 227206 (2011).

    Article  ADS  Google Scholar 

  49. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994)

    Article  ADS  Google Scholar 

  50. U. K. Rossler, A. Bogdanov, and C. Pfleiderer, Nature (London) 442, 797801 (2006)

    Article  Google Scholar 

  51. N. Nagaosa, and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).

    Article  ADS  Google Scholar 

  52. A. S. Moskvin, I. G. Bostrem, and A. S. Ovchinnikov, JETP Lett. 78 (12), 772 (2003)

    Article  ADS  Google Scholar 

  53. A. S. Moskvin, Phys. Rev. B: Condens. Matter 69, 214505 (2004).

    Article  ADS  Google Scholar 

  54. C. Timm, S. M. Girvin, and H. A. Fertig, Phys. Rev. B: Condens. Matter 58, 10634 (1998).

    Article  ADS  Google Scholar 

  55. A. G. Green, Phys. Rev. B: Condens. Matter 61, R16299 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moskvin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S. Pseudospin S = 1 formalism and skyrmion-like excitations in the three-body constrained extended Bose–Hubbard model. J. Exp. Theor. Phys. 121, 477–490 (2015). https://doi.org/10.1134/S1063776115090095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115090095

Keywords

Navigation