Skip to main content
Log in

Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation of state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Freidberg, R. W. Mitchel, R. L. Morse, and L. I. Rudsinski, Phys. Rev. Lett. 28, 795 (1972).

    Article  ADS  Google Scholar 

  2. M. Brunel, Phys. Rev. Lett. 59, 52 (1987).

    Article  ADS  Google Scholar 

  3. W. L. Kruer and K. Estabrook, Phys. Fluids 28, 430 (1985).

    Article  ADS  Google Scholar 

  4. V. Yu. Bychenkov and V. T. Tikhonchuk, in Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise, Ed. by G. Velarde, Y. Ronen, and J. M. Martinez-Val (CRC Press, Boca Raton, Florida, United States, 1993).

  5. G. Mourou, T. Tajima, and S. Bulanov, Rev. Mod. Phys. 78, 3092006 (2006).

    Article  Google Scholar 

  6. V. S. Belyaev, V. P. Krainov, V. S. Lisitsa, and A. P. Matafonov, Phys.—Usp. 51 (8), 793 (2008).

    Article  ADS  Google Scholar 

  7. S. Yu. Gus’kov, S. Borodziuk, M. Kalal, A. Kasperczuk, B. Kralikova, E. Krousky, J. Limpouch, K. Masek, T. Pisarczyk, P. Pisarczyk, M. Pfeifer, K. Rohlena, J. Skala, and J. Ullschmied, Quantum Electron. 34, 989 (2004).

    Article  ADS  Google Scholar 

  8. S. Yu. Gus’kov, A. Kasperczyk, T. Pisarczyk, S. Borodziuk, M. Kalal, J. Limpouch, J. Ullschmied, E. Krousky, K. Masek, M. Pfeifer, K. Rohlena, J. Skala, and P. Pisarczyk, Quantum Electron. 36, 429 (2006).

    Article  ADS  Google Scholar 

  9. N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res. 13, 396 (1992).

    Article  Google Scholar 

  10. M. Tabak, J. M. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994).

    Article  ADS  Google Scholar 

  11. V. A. Scherbakov, Sov. J. Plasma Phys. 9, 240 (1983).

    Google Scholar 

  12. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).

    Article  ADS  Google Scholar 

  13. S. Yu. Gus’kov, X. Ribeyre, M. Touati, J.-L. Feugeas, Ph. Nicolai, and V. Tikhonchuk, Phys. Rev. Lett. 109, 255004 (2012).

    Article  ADS  Google Scholar 

  14. J. J. Duderstadt and G. A. Mozes, Inertial Confinement Fusion (Wiley, New York, 1982).

    Google Scholar 

  15. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford University Press, Oxford, 2004).

    Book  Google Scholar 

  16. G. H. McCall, Plasma Phys. 25, 237 (1983).

    Article  ADS  Google Scholar 

  17. T. H. Tan, G. H. McCall, R. Kopp, T. Ganley, D. van Hulsteyn, A. Hauer, A. Williams, K. Mitchell, J. S. Ladish, and D. Giovanielli, Phys. Fluids 24, 754 (1983).

    Article  ADS  Google Scholar 

  18. S. Yu. Gus’kov, V. V. Zverev, and V. B. Rozanov, Sov. J. Quantum Electron. 13, 498 (1983).

    Article  ADS  Google Scholar 

  19. P. P. Volosevich and V. B. Rozanov, JETP Lett. 33 (1), 17 (1981).

    ADS  Google Scholar 

  20. S. Yu. Gus’kov and V. V. Zverev, in Proceedings of the Lebedev Physics Institute of the Academy of Sciences of the USSR: The Theory of Target Compression by Longwave Laser Emission: Volume 170 (Horizons in World Physics), Ed. by G. V. Sklizkov and Kevin S. Hendzel (Nova Science, New York, 1987).

  21. R. J. Harrach and R. E. Kidder, Phys. Rev. A: At., Mol., Opt. Phys. 23, 887 (1981).

    Article  ADS  Google Scholar 

  22. S. Atzeni, A. Schiavi, J. J. Honrubia, X. Ribeyre, G. Schurtz, Ph. Nicolai, M. Olazabal-Loumé, C. Bellei, R. G. Evans, and J. R. Davies, Phys. Plasmas 15 (5), 056311 (2008).

    Article  ADS  Google Scholar 

  23. S. Yu. Gus’kov, Plasma Phys. Rep. 39, 3 (2013).

    Google Scholar 

  24. X. Ribeyre, S. Yu. Gus’kov, M. Touati, J.-L. Feugeas, Ph. Nicolai, and V. T. Tikhonchuk, Phys. Plasmas 20, 062705 (2013).

    Article  ADS  Google Scholar 

  25. V. S. Imshennik, Sov. Phys. Dokl. 5, 263 (1960).

    ADS  Google Scholar 

  26. L. J. Perkins, R. Betti, K. N. Lafortune, and W. H. Williams, Phys. Rev. Lett. 103, 045004 (2009).

    Article  ADS  Google Scholar 

  27. X. Ribeyre, M. Lafon, G. Schurtz, M. Olazabal-Loumé, J. Breil, S. Galera, and S. Weber, Plasma Phys. Control. Fusion 51, 124030 (2009).

    Article  ADS  Google Scholar 

  28. S. G. Garanin, Phys.—Usp. 54 (4), 415 (2011).

    Article  ADS  Google Scholar 

  29. A. R. Bell, J. R. Davies, S. Guerin, and H. Ruhl, Plasma Phys. Control. Fusion 39, 653 (1997).

    Article  ADS  Google Scholar 

  30. C. K. Li and R. D. Petrasso, Phys. Plasmas 13, 056314 (2008).

    Article  ADS  Google Scholar 

  31. A. A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008).

    Article  ADS  Google Scholar 

  32. M. Storm, A. A. Solodov, J. F. Myatt, D. D. Meyerhofer, C. Stoeckl, C. Mileham, R. Betti, P. M. Nilson, T. C. Sangster, W. Theobald, and C. Guo, Phys. Rev. Lett. 102, 235004 (2009).

    Article  ADS  Google Scholar 

  33. T. E. Fox, A. P. L. Robinson, and J. Pasley, Phys. Plasmas 20, 122707 (2013).

    Article  ADS  Google Scholar 

  34. Ph. Nicolai, J.-L. Feugeas, M. Touati, X. Ribeyre, S. Gus’kov, and V. Tikhonchuk, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 033107 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Gus’kov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gus’kov, S.Y., Nicolai, P., Ribeyre, X. et al. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications. J. Exp. Theor. Phys. 121, 529–540 (2015). https://doi.org/10.1134/S106377611509006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611509006X

Keywords

Navigation