Skip to main content
Log in

High T c in cuprates as a universal property of the electron–phonon system

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Eliashberg theory, which is generalized due to peculiar properties of the finite-width electron band for electron–phonon (EP) systems with a variable electron density of states (DOS), as well as with allowance for the electron–hole nonequivalence of the frequency behavior of the chemical potential renormalization depending on the doping level and electron correlations in the vertex function, is used to study T c in cuprates. The phonon contribution to the nodal anomalous electron Green’s function (GF) is considered. Pairing within the total width of the electron band, and not only in a narrow layer at the Fermi surface, is taken into account. The calculated frequency and temperature dependences, as well as the dependence on the doping level of the complex renormalization ReZ, ImZ of the mass, complex renormalization Reχ(ω), Imχ(ω) of the chemical potential, and DOS N(ε) renormalized due to the EP interaction are used to calculate the electron nodal anomalous GF. It is found that the effect of suppressing the high-frequency contribution to the Eliashberg equations derived anew for the EP system with a finite width of the electron band is a decisive factor for the manifestation of the effect of high-temperature superconductivity (HTSC). It is shown that in the vicinity of the optimal hole-type doping level in cuprates, the high value of T c is reproduced by the spectral function of the electron–phonon interaction, which is obtained from tunneling experiments. Upon an increase in the doping level, leading to an increase in the degree of electron–hole nonequivalence, the new logarithmic term appearing in the equations for T c has a tendency to increase T c , while intensification of damping of charge carriers (especially suppression of the cutoff factor) leads to a decrease in T c .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Maximov, M. L. Kulich, and O. V. Dolgov, condmat/10014859.

  2. X. J. Zhou, T. Cuk, T. Devereaux, and N. Nagaosa, in Handbook of High-Temperature Superconductivity: Theory and Experiment, Ed. by J. R. Schrieffer (SpringerVerlag, Berlin, 2007), p. 87.

  3. F. Marsiglio and J. P. Carbotte, in Superconductivity: Conventional and Unconventional Superconductors, Ed. by K. H. Bennemann and J. B. Ketterson (SpringerVerlag, Berlin, 2008), Vol. 1, p. 73.

  4. A. S. Mishchenko, Phys.—Usp. 52 (12), 1193 (2009).

    Article  ADS  Google Scholar 

  5. O. Gunnarson and O. Rosch, J. Phys.: Condens. Matter. 20, 043201 (2008).

    ADS  Google Scholar 

  6. V. Z. Kresin and S. A. Wolf, Rev. Mod. Phys. 81, 481 (2009).

    Article  ADS  Google Scholar 

  7. G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960).

    Google Scholar 

  8. P. B. Allen and R. C. Dynes, Phys. Rev. B: Solid State 12, 905 (1975).

    Article  ADS  Google Scholar 

  9. A. S. Aleksandrov and E. A. Mazur, Sov. Phys. JETP 69 (5), 1001 (1989).

    Google Scholar 

  10. A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain and Z.-X. Shen, Nature (London) 412, 510 (2001).

    Article  ADS  Google Scholar 

  11. Bok Jin Mo, Yun Jae Hyun, Choi Han-Yong, Zhang Wentao, Zhou X. J., and Chandra Varma M., Phys. Rev. B: Condens. Matter 81, 174516 (2010); Bok Jin Mo, Yun Jae Hyun, Choi Han-Yong, Zhang Wentao, X. J. Zhou, and Varma M. Chandra, condmat/09120088.

    Article  ADS  Google Scholar 

  12. G.-H. Gweon, T. Sasagawa, and H. Takagi, Phys. Rev. Lett. 97, 227001 (2006); G.-H. Gweon, T. Sasagawa, and H. Takagi, cond-mat/07081027.

    Article  ADS  Google Scholar 

  13. H. Iwasawa, J. F. Douglas, K. Sato, T. Masui, Y. Yoshida, Z. Sun, H. Eisaki, H. Bando, A. Ino, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, S. Tajima, S. Uchida, et al., Phys. Rev. Lett. 101, 157005 (2008).

    Article  ADS  Google Scholar 

  14. E. A. Mazur, Europhys. Lett. 90, 47005 (2010)

    Article  ADS  Google Scholar 

  15. E. A. Mazur, Europhys. Lett. 90, 69901 (2010).

    Article  ADS  Google Scholar 

  16. A. S. Aleksandrov, V. N. Grebenev, and E. A. Mazur, JETP Lett. 45 (7), 455 (1987).

    MathSciNet  ADS  Google Scholar 

  17. S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).

    Article  ADS  Google Scholar 

  18. D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. 148, 263 (1966).

    Article  ADS  Google Scholar 

  19. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  20. A. E. Karakozov, E. G. Maksimov, and S. A. Mashkov, Sov. Phys. JETP 41 (5), 971 (1975).

    ADS  Google Scholar 

  21. V. L. Ginzburg and D. A. Kirzhnits, High-Temperature Superconductivity, (Consultants Bureau, New York, 1982).

    Book  Google Scholar 

  22. V. N. Grebenev and E. A. Mazur, Sov. J. Low Temp. Phys. 12 (5), 270 (1987).

    Google Scholar 

  23. W. E. Pickett, Phys. Rev. B: Condens. Matter 26, 1186 (1982).

    Article  ADS  Google Scholar 

  24. F. Marsiglio, J. Low Temp. Phys. 87, 659 (1992).

    Article  ADS  Google Scholar 

  25. D. M. Tang, J. Li, and Ch-De Gong, Solid State Commun. 133, 259 (2005).

    Article  ADS  Google Scholar 

  26. E. Schachinger and J. P. Carbotte, Phys. Rev. B: Condens. Matter 77, 094524 (2008).

    Article  ADS  Google Scholar 

  27. M. L. Kulich, Phys. Rep. 338, 1 (2000).

    Article  ADS  Google Scholar 

  28. A. A. Kordyuk and S. V. Borisenko, Low Temp. Phys. 32 (4), 298 (2006).

    Article  ADS  Google Scholar 

  29. M. M. Korshunov and S. G. Ovchinnikov, Eur. Phys. J. B 57, 271 (2007).

    Article  ADS  Google Scholar 

  30. W. Zhang, G. Liu, L. Zhao, H. Liu, J. Meng, X. Dong, W. Lu, J. S. Wen, Z. J. Xu, G. D. Gu, T. Sasagawa, G. Wang, Y. Zhu, H. Zhang, Y. Zhou, et al., Phys. Rev. Lett. 100, 107002 (2008).

    Article  ADS  Google Scholar 

  31. S. I. Vedeneev, A. G. M. Jensen, P. Samuely, V. A. Stepanov, A. A. Tsvetkov, and P. Wyder, Phys. Rev. B: Condens. Matter 49, 9823 (1994).

    Article  ADS  Google Scholar 

  32. S. I. Vedeneev, A. G. M. Jansen, A. A. Tsvetkov, and P. Wyder, Phys. Rev. B: Condens. Matter 51, 16380 (1995).

    Article  ADS  Google Scholar 

  33. S. I. Vedeneev, A. G. M. Jensen, and P. Wyder, Physica B (Amsterdam) 218, 213 (1996).

    Article  ADS  Google Scholar 

  34. A. Pushp, C. V. Parker, A. N. Pasuparty, K. K. Gomes, S. Ono, J. Wen, Z. Xu, G. Gu, and A. Yazdani, Science (Washington) 324, 1689 (2009).

    Article  ADS  Google Scholar 

  35. T. Kondo, R. Khasanov, T. Takeuchi, J. Schmalian, and A. Kaminski, Nature (London) 457, 296 (2009).

    Article  ADS  Google Scholar 

  36. D. N. Basov and A. V. Chubukov, Nat. Phys. 7, 272 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mazur.

Additional information

Original Russian Text © E.A. Mazur, Yu. Kagan, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 2, pp. 275–284.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazur, E.A., Kagan, Y. High T c in cuprates as a universal property of the electron–phonon system. J. Exp. Theor. Phys. 121, 237–245 (2015). https://doi.org/10.1134/S1063776115080117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115080117

Keywords

Navigation