Skip to main content
Log in

Effective conductivity of the rectangular and hexagonal tessellations in the plane

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effective conductivity of the two-dimensional periodic polygonal tessellations in the plane is determined using the perturbation theory and numerically. A diagram technique in perturbation theory for the effective conductivity of the tesselations in the plane is established using oblique coordinates. Calculations for the three color hexagonal tesselation have been carried out. A numerical method is developed for obtaining effective conductivity with high accuracy both when the perturbation theory is applicable and when the conductivities of the tessellation components are substantially different. For small differences between the conductivities of the components, the approach of the perturbation theory agrees with the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, Berlin, 2002).

    Book  Google Scholar 

  2. D. S. Lia, G. Sahelia, M. Khaleelb, and H. Garmestani, Comput. Mater. Sci. 38, 45 (2006).

    Article  Google Scholar 

  3. Yu. P. Emets, Electrical Characteristics of Composite Materials with a Regular Structure (Naukova Dumka, Kiev, 1986) [in Russian].

    Google Scholar 

  4. Lord Rayleigh, Philos. Mag., Ser. 5 34, 481 (1892).

    Article  MATH  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media (Butterworth–Heinemann, Oxford, 1984; Fizmatlit, Moscow, 2005).

    Google Scholar 

  6. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Article  ADS  Google Scholar 

  7. A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B 76, 475 (1976).

    Article  ADS  Google Scholar 

  8. S. H. Xie, Y. Y. Liu, and J. Y. Li, Appl. Phys. Lett. 92, 243121 (2008).

    Article  ADS  Google Scholar 

  9. A. Bagchi and S. Nomura, Compos. Sci. Technol. 66, 1703 (2006).

    Article  Google Scholar 

  10. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, Appl. Phys. Lett. 89, 143119 (2006).

    Article  ADS  Google Scholar 

  11. J. B. Keller, J. Math. Phys. 5, 548 (1964).

    Article  ADS  MATH  Google Scholar 

  12. A. M. Dykhne, Sov. Phys. JETP 32, 63 (1970).

    ADS  Google Scholar 

  13. V. G. Marikhin, JETP Lett. 71 (6), 271 (2000).

    Article  ADS  Google Scholar 

  14. Yu. N. Ovchinnikov and A. M. Dyugaev, J. Exp. Theor. Phys. 90 (6), 1058 (2000).

    Article  ADS  Google Scholar 

  15. Yu. N. Ovchinnikov and I. A. Luk’yanchuk, J. Exp. Theor. Phys. 94 (1), 203 (2002).

    Article  ADS  Google Scholar 

  16. Yu. N. Ovchinnikov, J. Exp. Theor. Phys. 98 (1), 162 (2004).

    Article  ADS  Google Scholar 

  17. Yu. P. Emets, Sov. Phys. JETP 69 (2), 397 (1989).

    Google Scholar 

  18. A. M. Satanin, V. V. Skuzovatkin, and S. V. Khor’kov, JETP Lett. 64 (7), 538 (1996).

    Article  ADS  Google Scholar 

  19. A. M. Satanin, V. V. Skuzovatkin, and S. V. Khor’kov, J. Exp. Theor. Phys. 85 (2), 351 (1997).

    Article  ADS  Google Scholar 

  20. I. M. Khalatnikov and A. Yu. Kamenshchik, J. Exp. Theor. Phys. 91 (6), 1261 (2000).

    Article  ADS  Google Scholar 

  21. G. E. Karniadakis and R. M. Kirby II, Parallel Scientific Computing in C++ and MPI (Cambridge University Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  22. V. Voevodin, S. Zhumatii, S. Sobolev, A. Antonov, P. Bryzgalov, D. Nikitenko, K. Stefanov, and V. Voevodin, Otkrytye Sist. 7, 36 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Barash.

Additional information

Original Russian Text © L.Yu. Barash, I.M. Khalatnikov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 2, pp. 266–274.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barash, L.Y., Khalatnikov, I.M. Effective conductivity of the rectangular and hexagonal tessellations in the plane. J. Exp. Theor. Phys. 121, 229–236 (2015). https://doi.org/10.1134/S1063776115080014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115080014

Keywords

Navigation