Skip to main content
Log in

Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed new model in order to analyze time-of-flight experiments for nanostructured semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Abdi, Y. Abdi, E. N. Oskoee, and M. Sajedi, J. Nanopart. Res. 16, 1 (2014).

    Article  Google Scholar 

  2. M. Ansari-Rad, Y. Abdi, and E. Arzi, J. Phys. Chem. C 116, 3212 (2012).

    Article  Google Scholar 

  3. H. Scher and E. W. Montroll, Phys. Rev. B: Solid State 12, 2455 (1975).

    Article  ADS  Google Scholar 

  4. R. A. Street, K. W. Song, J. E. Northrup, and S. Cowan, Phys. Rev. B: Condens. Matter 83, 165207 (2011).

    Article  ADS  Google Scholar 

  5. J. Bisquert, Phys. Rev. Lett. 91, 010602 (2003).

    Article  ADS  Google Scholar 

  6. I. P. Zvyagin, Kinetic Phenomena in Disordered Semiconductors (Moscow State University, Moscow, 1984) [in Russian].

    Google Scholar 

  7. T. Tiedje, in The Physics of Hydrogenated Amorphous Silicon, Volume II: Electronic and Vibrational Properties, Ed. by J. D. Joannoulos and G. Lucovsky (Springer-Verlag, New York, 1984).

  8. A. Madan and M. P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic, Boston, Massachusetts, United States, 1988).

    Google Scholar 

  9. A. P. Tyutnev, V. S. Saenko, E. D. Pozhidaev, and N. S. Kostyukov, Dielectric Properties of Polymers in Ionizing Radiation Fields (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  10. V. I. Arkhipov, A. I. Rudenko, and A. M. Andriesh, Nonstationary Injection Currents in Disordered Solids (Shtiintsa, Kishinev, 1983) [in Russian].

    Google Scholar 

  11. R. T. Sibatov and V. V. Uchaikin, Semiconductors 41 (3), 335 (2007).

    Article  ADS  Google Scholar 

  12. V. V. Uchaikin and R. T. Sibatov, Commun. Nonlinear Sci. Numer. Simul. 13, 715 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. V. V. Uchaikin and R. T. Sibatov, JETP Lett. 86 (8), 512 (2007).

    Article  ADS  Google Scholar 

  14. V. R. Nikitenko, Nonstationary Processes of Transfer and Recombination of Charge Carriers in Thin Layers of Organic Materials (National Research Nuclear University MEPhI, Moscow, 2011) [in Russian].

    Google Scholar 

  15. B. E. Conway and W. G. Pell, J. Power Sources 105, 169 (2002).

    Article  ADS  Google Scholar 

  16. F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, Nano Lett. 10, 2562 (2010).

    Article  ADS  Google Scholar 

  17. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Noolandi, Phys. Rev. B: Solid State 16, 4466 (1977).

    Article  ADS  Google Scholar 

  19. J. Noolandi, Phys. Rev. B: Solid State 16, 4474 (1977).

    Article  ADS  Google Scholar 

  20. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, Q. Yuan, and E. A. Schiff, Phys. Rev. B: Condens. Matter 73, 045326 (2006).

    Article  ADS  Google Scholar 

  21. B. Hartenstein, H. Bassler, A. Jakobs, and K. W. Kehr, Phys. Rev. B: Condens. Matter 54, 8574 (1996).

    Article  ADS  Google Scholar 

  22. F. W. Schmidlin, Solid State Commun. 22, 451 (1977).

    Article  ADS  Google Scholar 

  23. M. Pollak, Philos. Mag. 36, 1157 (1977).

    Article  ADS  Google Scholar 

  24. V. I. Gol’danskii, L. I. Trakhtenberg, and V. N. Flerov, Tunneling Phenomena in Chemical Physics (Nauka, Moscow, 1986; Gordon and Breach, New York, 1989), Chap. 8.

    Google Scholar 

  25. V. P. Shkilev, J. Exp. Theor. Phys. 115 (1), 164 (2012).

    Article  ADS  Google Scholar 

  26. R. T. Sibatov and V. V. Uchaikin, Phys.-Usp. 52 (10), 1019 (2009).

    Article  ADS  Google Scholar 

  27. V. I. Arkhipov, Yu. A. Popova, and A. I. Rudenko, Sov. Phys. Semicond. 17 (10), 1159 (1983).

    Google Scholar 

  28. I. Podlubny, Fractional Differential Equations (Academic, London, 1998).

    Google Scholar 

  29. V. V. Uchaikin, Method of Fractional Derivatives (Artishok, Ulyanovsk, 2008) [in Russian].

    Google Scholar 

  30. V. E. Arkhincheev and E. M. Baskin, Sov. Phys. JETP 73 (1), 161 (1991).

    Google Scholar 

  31. E. Baskin and A. Iomin, Phys. Rev. Lett. 93, 120603 (2004).

    Article  ADS  Google Scholar 

  32. G. H. Weiss and S. Havlin, Physica A (Amsterdam) 134, 474 (1986).

    Article  ADS  Google Scholar 

  33. V. E. Arkhincheev, JETP Lett. 86 (8), 508 (2007).

    Article  ADS  Google Scholar 

  34. N. I. Chekunaev, Yu. A. Berlin, and V. N. Fleurov, J. Phys. C: Solid State Phys.15, 1219 (1982).

    Article  ADS  Google Scholar 

  35. I. A. Lubashevskii and A. A. Zemlyanov, J. Exp. Theor. Phys. 87 (4), 700 (1998).

    Article  ADS  Google Scholar 

  36. V. V. Uchaikin and R. T. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics, and Nanosystems (World Scientific, Singapore, 2012).

    Google Scholar 

  37. P. N. Rao, E. A. Schiff, L. Tsybeskov, and P. Fauchet, Chem. Phys. 284, 129 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. T. Sibatov or E. V. Morozova.

Additional information

Original Russian Text © R.T. Sibatov, E.V. Morozova, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 5, pp. 993–1004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibatov, R.T., Morozova, E.V. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors. J. Exp. Theor. Phys. 120, 860–870 (2015). https://doi.org/10.1134/S106377611504024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611504024X

Keywords

Navigation