We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Modeling quasi-lattice with octagonal symmetry

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We prove the possibility to use the method of modeling of a quasi-lattice with octagonal symmetry similar to that proposed earlier for the decagonal quasicrystal. The method is based on the multiplication of the groups of basis sites according to specified rules. This model is shown to be equivalent to the method of the periodic lattice projection, but is simpler because it considers merely two-dimensional site groups. The application of the proposed modeling procedure to the reciprocal lattice of octagonal quasicrystals shows a fairly good matching with the electron diffraction pattern. Similarly to the decagonal quasicrystals, the possibility of three-index labeling of the diffraction reflections is exhibited in this case. Moreover, the ascertained ratio of indices provides information on the intensity of diffraction reflections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. S. E. Burkov, Phys. Rev. B: Condens. Matter 47, 12325 (1993).

    Article  ADS  Google Scholar 

  2. Yanfa Yan and S. J. Pennycook, Phys. Rev. B: Condens. Matter 61, 14291 (2000).

    Article  ADS  Google Scholar 

  3. V. V. Kovshevny, D. V. Olenev, and Yu. Kh. Vekilov, J. Exp. Theor. Phys. 86(2), 375 (1998).

    Article  ADS  Google Scholar 

  4. Yu. Kh. Vekilov and E. I. Isaev, Crystallogr. Rep. 52(6), 932 (2007).

    Article  ADS  Google Scholar 

  5. W. Steurer and S. Deloudi, Crystallography of Quasicrystals: Concepts, Methods, and Structures (Springer-Verlag, Berlin, 2009), p. 384.

    Google Scholar 

  6. R. Ammann, B. Grünbaum, and G. C. Shephard, Discrete Comput. Geom. 8, 1 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  7. F. P. N. Beenker, Algebraic Theory of Non-Periodic Tilings of the Plane by Two Simple Building Blocks: A Square and a Rhombus (Eindhoven University of Technology, Eindhoven, The Netherlands, 1982), TH-Report 82-WSK04.

    Google Scholar 

  8. P. J. Lu, K. Deffeyes, P. J. Steinhardt, and N. Yao, Phys. Rev. Lett. 87, 275507 (2001).

    Article  ADS  Google Scholar 

  9. V. E. Dmitrienko, V. A. Chizhikov, S. B. Astaf’ev, and M. Kléman, Crystallogr. Rep. 49(5), 547 (2004).

    Article  ADS  Google Scholar 

  10. A. Singh and S. Ranganathan, J. Mater. Res. 14, 11 (1999).

    Google Scholar 

  11. S. Ranganathan, E. A. Lord, N. K. Mukhopadhyay, and A. Singh, Acta Crystallogr., Sect. A: Found. Crystallogr. 63, 1 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. K. Vekilov and M. A. Chernikov, Phys.-Usp. 53(6), 537 (2010).

    Article  ADS  Google Scholar 

  13. C. Janot, Quasicrystals: A Primer, 2nd ed. (Oxford University Press, New York, 1994), p. 409.

    MATH  Google Scholar 

  14. J. W. Cahn, D. Shechtman, and D. Gratias, J. Mater. Res. 1, 13 (1986).

    Article  ADS  Google Scholar 

  15. V. V. Girzhon, V. M. Kovalyova, O. V. Smolyakov, and M. I. Zakharenko, J. Non-Cryst. Solids 358, 137 (2012).

    Article  ADS  Google Scholar 

  16. J.-M. Dubois, Useful Quasicrystals (World Scientific, Singapore, 2005), p. 481.

    Book  Google Scholar 

  17. M. Bicknell, Fibonacci Q. 13, 345 (1975).

    MATH  MathSciNet  Google Scholar 

  18. Y. Roichman and D. G. Grier, arXiv:cond-mat/0506283.

  19. D. Levine and P. Steinhardt, Phys. Rev. Lett. 53, 26 (1984).

    Article  Google Scholar 

  20. K. H. Kuo, J. Non-Cryst. Solids 117/118, 754 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Smolyakov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girzhon, V.V., Smolyakov, O.V. & Zakharenko, M.I. Modeling quasi-lattice with octagonal symmetry. J. Exp. Theor. Phys. 119, 854–860 (2014). https://doi.org/10.1134/S1063776114110053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114110053

Keywords

Navigation