Skip to main content
Log in

Coherent soliton communication lines

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Consultants Bureau, New York, 1984).

    MATH  Google Scholar 

  2. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford University Press, Oxford, United Kingdom, 1995).

    MATH  Google Scholar 

  3. L. F. Mollenauer and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic, San Diego, California, United States, 2006).

    Google Scholar 

  4. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, California, United States, 2003).

    Google Scholar 

  5. S. K. Turitsyn, B. Bale, and M. P. Fedoruk, Phys. Rep. 521, 135 (2012).

    Article  ADS  Google Scholar 

  6. S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, C. R. Phys. 4, 145 (2003).

    Article  ADS  Google Scholar 

  7. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  8. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).

    Article  ADS  Google Scholar 

  9. L. F. Mollenauer and K. Smith, Opt. Lett. 13, 675 (1988).

    Article  ADS  Google Scholar 

  10. L. F. Mollenauer, P. V. Mamyshev, and J. P. Gordon, in Optical Fiber Telecommunications, Ed. by T. L. Koch (Academic, San Diego, California, United States, 1997), Vol. IIIA, Chap. 10.

  11. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Networks (Wiley, New York, 1998), Chap. 5.

    Google Scholar 

  12. E. B. Desurvire, J. Lightwave Technol. 24, 4697 (2006).

    Article  ADS  Google Scholar 

  13. D. Hillercus and R. Schmogrow, Nat. Photonics 5, 364 (2011).

    Article  ADS  Google Scholar 

  14. E. Ip and J. M. Kahn, J. Lightwave Technol. 26, 3416 (2008).

    Article  ADS  Google Scholar 

  15. S. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, New York, 2010).

    Google Scholar 

  16. R. Schmogrow, M. Winter, and M. Meyer, Opt. Express 20, 317 (2011).

    Article  ADS  Google Scholar 

  17. R.-J. Essiambre and P. J. Winzer, J. Lightwave Technol. 28, 662 (2010).

    Article  ADS  Google Scholar 

  18. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, Phys. Rev. Lett. 101, 163901 (2008).

    Article  ADS  Google Scholar 

  19. A. D. Ellis, J. Zhao, and D. Cotter, J. Lightwave Technol. 28, 423 (2010).

    Article  ADS  Google Scholar 

  20. J. D. Ania-Castanon, V. Karalekas, P. Harper, and S. K. Turitsyn, Phys. Rev. Lett. 101, 123903 (2008).

    Article  ADS  Google Scholar 

  21. T. J. Ellingham, J. D. Ania-Castanon, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, IEEE Photonics Technol. Lett. 18, 268 (2006).

    Article  ADS  Google Scholar 

  22. W. Forysiak and N. Doran, J. Lightwave Technol. 13, 850 (1995).

    Article  ADS  Google Scholar 

  23. L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, Opt. Lett. 17, 1575 (1992).

    Article  ADS  Google Scholar 

  24. P. V. Mamyshev and L. F. Mollenauer, Opt. Lett. 19, 2083 (1994).

    Article  ADS  Google Scholar 

  25. S. L. Jansen and P. M. Krummrich, IEEE Photonics Technol. Lett. 17, 923 (2005).

    Article  ADS  Google Scholar 

  26. C. J. McKinstrie, S. Radic, and C. Xie, Opt. Lett. 28, 1519 (2003).

    Article  ADS  Google Scholar 

  27. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, Phys. Rev. Lett. 108, 183902 (2012).

    Article  ADS  Google Scholar 

  28. S. Amiralizadeh, A. Nguyen, and L. Rusch, Opt. Express 21, 20376 (2013).

    Article  ADS  Google Scholar 

  29. T. Tanimura, M. Nolle, J. K. Fisher, and C. Schubert, in Theses of the 38th European Conference and Exhibition on Optical Communications (ECOC 2012), Amsterdam, The Netherlands, September 16–20, 2012 (Amsterdam, 2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yushko.

Additional information

Original Russian Text © O.V. Yushko, A.A. Redyuk, M.P. Fedoruk, S.K. Turitsyn, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 5, pp. 899–908.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushko, O.V., Redyuk, A.A., Fedoruk, M.P. et al. Coherent soliton communication lines. J. Exp. Theor. Phys. 119, 787–794 (2014). https://doi.org/10.1134/S1063776114100124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114100124

Keywords

Navigation