Skip to main content
Log in

Multicaloric effect in a solid: New aspects

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The multicaloric effect that is the result of interaction between various caloric effects has been studied theoretically. The effects attributable to the pairwise interactions of fields (piezomagnetocaloric, piezoelectrocaloric, and magnetoelectrocaloric effects) have been added to the previously known electrocaloric, magnetocaloric, and elastocaloric effects that exist when the electric, magnetic, and elastic fields change. These new effects are shown to be determined by the temperature dependence of the piezomagnetic (magnetostrictive), piezoelectric (electrostrictive), and magnetoelectric coefficients. According to the estimates obtained, the change in entropy in an isothermal process under the magnetoelectrocaloric effect for Cr2O3 is 2–5 mJ kg−1 K−1. The caloric effects caused by the influence of the gradient in one of the fields on other fields are shown to contribute to the multicaloric effect. One of these gradient effects, the flexocaloric one, which consists in a change in temperature and/or entropy when a strain gradient is applied or removed, has been studied in detail as an example. It follows from the derived formulas that the greatest values of this effect should be expected for materials with strong temperature dependences of the flexocaloric coefficient, permittivity, or permeability. The change in temperature calculated from experimental data for a PMN ferroelectric is estimated as 2–6 mK at a strain gradient of 1 m−1. The interaction between fields of a different nature is known to lead to the synergetic effect, and the multicaloric effect can reach values that are commonly called giant ones, expanding considerably the possible domains of its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Pecharsky and K. A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997).

    Article  ADS  Google Scholar 

  2. A. S. Mischenko, Q. Zhang, and J. F. Scott, Appl. Phys. Lett. 89, 242912 (2006).

    Article  ADS  Google Scholar 

  3. M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. K. Dovletov, J. Appl. Phys. 79, 1689 (1996).

    Article  ADS  Google Scholar 

  4. L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J.-L. Tamarit, S. Aksoy, and M. Acet, Nat. Mater. 9, 478 (2010).

    Article  ADS  Google Scholar 

  5. I. N. Flerov, Izv. S.-Peterb. Gos. Univ. Nizkotemp. Pishch. Tekhnol. 9, 41 (2008).

    Google Scholar 

  6. H. Schmid, Ferroelectrics 162, 317 (1994).

    Article  Google Scholar 

  7. A. S. Starkov, O. V. Pakhomov, and I. A. Starkov, Tech. Phys. Lett. 37(12), 1139 (2011).

    Article  Google Scholar 

  8. A. Starkov, O. Pakhomov, and I. Starkov, Ferroelectrics 430, 108 (2012).

    Article  Google Scholar 

  9. I. A. Starkov and A. S. Starkov, Int. J. Refrig. 37, 249 (2014).

    Article  Google Scholar 

  10. M. A. Leontovich, Introduction to Thermodynamics: Statistical Physics (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  11. S. F. Karmanenko, A. A. Semenov, A. I. Dedyk, A. Es’kov, A. Ivanov, P. Beliavskiy, Y. Pavlova, A. Nikitin, and I. Starkov, New Approaches to Electrocaloric-Based Multilayer Cooling, in Electrocaloric Materials, Ed. by T. Correia and Q. Zhang (Springer-Verlag, Berlin, 2014), Vol. 34, p. 183.

    Chapter  Google Scholar 

  12. A. P. Pyatakov and A. K. Zvezdin, Phys.-Usp. 55(6), 557 (2012).

    Article  ADS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 7: Theory of Elasticity (Fizmatlit, Moscow, 1987; Butterworth-Heinemann, Oxford, 1995).

    Google Scholar 

  14. Th. Strässle, A. Furrer, and K. A. Müller, Physica B (Amsterdam) 276–278, 944 (2000).

    Article  Google Scholar 

  15. M. Mostovoy, A. Scaramucci, N. A. Spaldin, and K. T. Delaney, Phys. Rev. Lett. 105, 087202 (2010).

    Article  ADS  Google Scholar 

  16. D. N. Astrov, Sov. Phys. JETP 13, 729 (1961).

    Google Scholar 

  17. J. Ma, J. Hu, Z. Li, and C.-W. Nan, Adv. Mater. (Weinheim) 23, 1062 (2011).

    Article  Google Scholar 

  18. N. A. de Oliveira, J. Phys.: Condens. Matter. 20, 175209 (2008).

    ADS  Google Scholar 

  19. A. Mischenko, Q. Zhang, and J. F. Scott, Appl. Phys. Lett. 89, 242912 (2006).

    Article  ADS  Google Scholar 

  20. E.-M. Anton, W. Jo, D. Damjanovic, and J. Röbel, J. Appl. Phys. 110, 094108 (2011).

    Article  ADS  Google Scholar 

  21. A. S. Starkov, O. V. Pakhomov, and I. A. Starkov, Ferroelectrics 442, 10 (2013).

    Article  Google Scholar 

  22. A. K. Tagantsev, Sov. Phys.-Usp. 30(7), 588 (1987).

    Article  ADS  Google Scholar 

  23. E. A. Eliseev, A. N. Morozovska, M. D. Glinchuk, and R. Blinc, Phys. Rev. B: Condens. Matter 79, 165433 (2009).

    Article  ADS  Google Scholar 

  24. A. S. Yurkov, JETP Lett. 94(6), 455 (2011).

    Article  ADS  Google Scholar 

  25. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon, Oxford, 1957; Inostrannaya Literatura, Moscow, 1960).

    MATH  Google Scholar 

  26. W. Ma and E. L. Cross, Appl. Phys. Lett. 88, 232902 (2006).

    Article  ADS  Google Scholar 

  27. P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott, Phys. Rev. Lett. 99, 167601 (2007).

    Article  ADS  Google Scholar 

  28. L. Cross, J. Mater. Sci. 41, 53 2006.

    Article  ADS  Google Scholar 

  29. P. Kobeko and I. Kurtschatov, Z. Phys. 66, 192 (1930).

    Article  ADS  Google Scholar 

  30. D. Lee, A. Yoon, S. Y. Jang, J.-G. Yoon, J.-S. Chung, M. Kim, J. F. Scott, and T. W. Noh, Phys. Rev. Lett. 107, 057602 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Starkov.

Additional information

Original Russian Text © A.S. Starkov, I.A. Starkov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 2, pp. 297–303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starkov, A.S., Starkov, I.A. Multicaloric effect in a solid: New aspects. J. Exp. Theor. Phys. 119, 258–263 (2014). https://doi.org/10.1134/S1063776114070097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114070097

Keywords

Navigation