Skip to main content
Log in

Effects of magnetic anisotropy and exchange in Tm2Fe17

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Neutron diffraction experiments have been carried out to study the magnetocrystalline anisotropy of two (2b and 2d) Tm sublattices and four (4f, 6g, 12j, and 12k) Fe sublattices in ferrimagnetic compound Tm2Fe17 (space group P63/mmc). We have determined the temperature dependence of the magnitude and orientation of magnetization for each of the thulium and iron sublattices in the range (10–300) K. A spontaneous rotation (at about 90 K) of the Tm and Fe sublattice magnetizations from the c-axis to the basal plane is accompanied by a drastic change in the magnetization magnitude, signifying a large magnetization anisotropy. Both Tm sublattices exhibit an easy-axis type of the magnetocrystalline anisotropy. The Fe sublattices manifest both the uniaxial and planar anisotropy types. The sublattice formed by Fe atoms at the 4f position reveals the largest planar anisotropy constant. The Fe atoms at the 12j position show a uniaxial anisotropy. We find that the inelastic neutron scattering spectra measured below and above the spin-reorientation transition are remarkably different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Skomski and D. J. Sellmyer, J. Rare Earths 27, 675 (2009).

    Article  Google Scholar 

  2. A. S. Ermolenko, E. V. Rosenfeld, Yu. N. Irkhin, V. V. Kelarev, A. F. Rozhda, S. K. Sidorov, A. N. Pirogov, and A. P. Vokhmyanin, Sov. Phys. JETP 42(5), 885 (1975).

    ADS  Google Scholar 

  3. N. H. Luong, Physica B (Amsterdam) 319, 90 (2002).

    ADS  Google Scholar 

  4. M. T. Hutchings, Solid State Phys. 16, 227 (1964).

    Article  Google Scholar 

  5. N. Plugaru, J. Rubin, J. Bartolome, C. Piquer, and M. Artigas, Phys. Rev. B: Condens. Matter 65, 134419 (2002).

    Article  ADS  Google Scholar 

  6. M.-H. Yu and Z.-D. Zhang, J. Magn. Magn. Mater 232, 60 (2001).

    Article  ADS  Google Scholar 

  7. O. Tegus, E. Brück, A. A. Menovsky, F. R. de Boer, and K. H. J Buschow, J. Alloys Compd. 302, 21 (2000).

    Article  Google Scholar 

  8. O. Bardyn, B. Belan, R. Gladyshewskii, A. Pietraszko, W. Suski, K. Wochowski, R. Gorzelniak, A. Gilewski, and T. Mydlarz, Chem. Met. Alloys 3, 69 (2010).

    Google Scholar 

  9. P. C. M. Gubbens, A. M. Kraan, J. J. Loef, and K. H. J. Buschow, J. Magn. Magn. Mater. 67, 255 (1987).

    Article  ADS  Google Scholar 

  10. V. Yu. Irkhin and Yu. P. Irkhin, Phys. Rev. B: Condens. Matter 57, 2697 (1998).

    Article  ADS  Google Scholar 

  11. Yu. P. Irkhin and V. Yu. Irkhin, Phys. Solid State 43(2), 284 (2001).

    Article  ADS  Google Scholar 

  12. F. Grandjean, O. Isnard, and G. J. Long, Phys. Rev. B: Condens. Matter 65, 064429 (2002).

    Article  ADS  Google Scholar 

  13. E. V. Rosenfel’d and A. V. Korolev, JETP 81(3), 471 (1995).

    ADS  Google Scholar 

  14. J. Rodriguez-Carvajal, Physica B (Amsterdam) 192, 55 (1993).

    ADS  Google Scholar 

  15. E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 310 (1960).

    Article  ADS  Google Scholar 

  16. B. Matthaei, J. J. M. Franse, S. Sinema, and R. J. Radwanski, J. Phys., Colloq. 49, C8–533 (1988).

    Article  Google Scholar 

  17. A. V. Andreev, D. Rafaja, J. Kamarad, Z. Arnold, Y. Homma, and Y. Shiokawa, Physica B (Amsterdam) 348, 141 (2004).

    ADS  Google Scholar 

  18. K. H. J. Buschow, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (North Holland, Amsterdam, 1997), Vol. 10, p. 463.

    Google Scholar 

  19. P. Larson and I. I. Mazin, J. Magn. Magn. Mater. 264, 7 (2003).

    Article  ADS  Google Scholar 

  20. O. Moze, R. Caciuffo, B. Gillon, G. Calestani, F. E. Kayzel, and J. J. M. Franse, Phys. Rev. B: Condens. Matter 50, 9293 (1994).

    Article  ADS  Google Scholar 

  21. O. V. Kovalev, in Representation of the Crystallographic Space Groups: Irreducible Representations, Induced Representations, and Corepresentations, Ed. by H. T. Stokes, and D. M. Hatch (Gordon and Breach, Amsterdam, 1993), p. 349.

    Google Scholar 

  22. Yu. A. Izyumov, R. P. Ozerov, and V. E. Naish, Neutron Diffraction of Magnetic Materials (Consultant Bureau, New York, 1991), p. 82.

    Book  Google Scholar 

  23. A. V. Andreev, in Handbook of Magnetic Materials, Ed. by K. H. J. Buscow (North Holland, Amsterdam, 1995), Vol. 8, p. 59.

    Google Scholar 

  24. Y. Hao, X. Zhang, B. Wang, Y. Yuang, and F. Wang, J. Appl. Phys. 108, 023915 (2010).

    Article  ADS  Google Scholar 

  25. M. T. Averbuch-Pouchot, R. Chevalier, J. Deportes, B. Kebe, and R. Lemaire, J. Magn. Magn. Mater. 68, 190 (1987).

    Article  ADS  Google Scholar 

  26. P. C. M. Gubbens, A. M. van der Kraan, T. H. Jacobs, and K. H. J. Buschow, J. Magn. Magn. Mater. 80, 265 (1989).

    Article  ADS  Google Scholar 

  27. J. Park, Y. Jo, J.-G. Park, K. Prokeš, S. Welzel, C. H. Lee, N. Kudrevatykh, E. Valiev, A. Pirogov, and D. Sheptyakov, J. Magn. Magn. Mater. 237, 158 (2001).

    Article  ADS  Google Scholar 

  28. D. Givord and R. Lemaire, in Proceedings of the International Conference of Magnetism (ICM-73), Moscow, Russia, August 22–28, 1973 (Nauka, Moscow, 1974), Vol. III, p. 492.

    Google Scholar 

  29. O. Prokhnenko, C. Ritter, Z. Arnold, O. Isnard, J. Kamarád, A. Pirogov, A. Teplykh, and A. Kuchin, J. Appl. Phys. 92, 385 (2002).

    Article  ADS  Google Scholar 

  30. D. Givord and R. Lemaire, IEEE Trans. Magn. 10, 109 (1974).

    Article  ADS  Google Scholar 

  31. Y. Janssen, H. Fujii, T. Ekino, K. Izawa, T. Suzuki, T. Fujita, and F. R. de Boer, Phys. Rev. B: Condens. Matter 56, 13716 (1997).

    Article  ADS  Google Scholar 

  32. C. Pique, R. Burriel, D. Fruchart, O. Isnard, and S. Miraglia, IEEE Trans. Magn. 30, 604 (1994).

    Article  ADS  Google Scholar 

  33. X. C. Kou, F. R. de Boer, R. Grössinger, G. Wiesinger, H. Suzuki, H. Kitazawa, T. Takamasu, and G. Kido, J. Magn. Magn. Mater. 177–181, 1002 (1998).

    Article  Google Scholar 

  34. A. V. Andreev, A. V. Deryagin, S. M. Zadvorkin, N. V. Kudrevatykh, V. N. Moskalev, R. Z. Levitin, Yu. F. Popov, and R. Yu. Yumaguzhin, Physics of Magnetic Materials, Ed. by D. D. Mishin (Kalinin State University, Kalinin, 1985), p. 26. [in Russian].

    Google Scholar 

  35. H. Mayer, M. Steiner, N. Stüβer, H. Weinfurter, K. Kakurai, B. Dorner, P. A. Lindgård, K. N. Clausen, S. Hock, and W. Rodewald, J. Magn. Magn. Mater 97, 210 (1991).

    Article  ADS  Google Scholar 

  36. T. P. Thuy and J. J. M. France, J. Magn. Magn. Mater. 54–57, 915 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pirogov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirogov, A.N., Bogdanov, S.G., Rosenfeld, E.V. et al. Effects of magnetic anisotropy and exchange in Tm2Fe17 . J. Exp. Theor. Phys. 115, 837–848 (2012). https://doi.org/10.1134/S106377611210010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611210010X

Keywords

Navigation