Skip to main content
Log in

Charged fermions tunneling from regular black holes

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Bekenstein, Lett. Nuovo Cimento Soc. Ital. Fis. 4, 737 (1972).

    Article  ADS  Google Scholar 

  2. S. W. Hawking, Nature (London) 248, 30 (1974).

    Article  ADS  Google Scholar 

  3. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Kraus and F. Wilczek, Nucl. Phys. B 433, 403 (1995).

    Article  ADS  Google Scholar 

  5. M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  6. K. Srinivasan and T. Padmanabhan, Phys. Rev. D: Part. Fields 60, 024007 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Shankaranarayanan, K. Srinivasan, and T. Padmanabhan, Mod. Phys. Lett. A 16, 571 (2001); S. Shankaranarayanan, T. Padmanabhan, and K. Srinivasan, Classical Quantum Gravity 19, 2671 (2002).

    Article  MathSciNet  Google Scholar 

  8. R. Kerner and R. B. Mann, Classical Quantum Gravity 25, 095014 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Kerner and R. B. Mann, Phys. Lett. B 665, 277 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Li, J. R. Ren, and S. W. Wei, Classical Quantum Gravity 25, 125016 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Y. Chen, Q. Q. Jiang, and X. T. Zu, Classical Quantum Gravity 25, 205022 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  12. X.-X. Zeng and S.-Z. Yang, Gen. Relativ. Gravitation 40, 2107 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. C. Ding and J. Jing, Classical Quantum Gravity 27, 035004 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Yang and S. Z. Yang, J. Geom. Phys. 60, 986 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. R. Li and J. R. Ren, Phys. Lett. B 661, 370 (2008); R. Li, S. Li, and J. R. Ren, Classical Quantum Gravity 27, 155011 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  16. O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D: Part. Fields 67, 064001 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  17. O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D: Part. Fields 67, 084018 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Bilal and K. Saifullah, arXiv:1010.5575.

  19. U. A. Gillani and K. Saifullah, Phys. Lett. B 699, 15 (2011); M. Rehman and K. Saifullah, J. Cosmol. Astropart. Phys. 2011 (03), 001 (2011); U. A. Gillani, M. Rehman, and K. Saifullah, J. Cosmol. Astropart. Phys. 2011 (06), 016 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Sharif and W. Javed, JETP 114(6), 933 (2012).

    Article  ADS  Google Scholar 

  21. M. Sharif and W. Javed, J. Korean Phys. Soc. 57, 217 (2010).

    Article  ADS  Google Scholar 

  22. M. Sharif and W. Javed, Astrophys. Space Sci. 337, 335 (2012).

    Article  ADS  MATH  Google Scholar 

  23. E. Ayón-Beato and A. García, Phys. Lett. B 493, 149 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. Bardeen, in Proceedings of the Fifth International Conference on Gravitation and the Theory of Relativity (GR5), Tbilisi, Georgian Soviet Socialist Republic, Soviet Union, September 9–13, 1968 (Tbilisi, 1968).

  25. M. Sharif and W. Javed, Can. J. Phys. 89, 1027 (2011).

    Article  ADS  Google Scholar 

  26. E. Ayón-Beato and A. García, Phys. Lett. B 464, 25 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. K. A. Bronnikov, Phys. Rev. Lett. 85, 4641 (2000).

    Article  ADS  Google Scholar 

  28. J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 83, 124005 (2011).

    Article  Google Scholar 

  29. E. Ayón-Beato and A. García, Gen. Relativ. Gravitation 37, 635 (2005).

    Article  ADS  MATH  Google Scholar 

  30. J. Matyjasek, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 70, 047504 (2004).

    Article  MathSciNet  Google Scholar 

  31. P. Mitra, Phys. Lett. B 648, 240 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. H. Gilbert and D. G. Smith, Gravity, the Glue of the Universe: History and Activities (Teacher Ideas Press, Englewood, 1997).

    Google Scholar 

  33. R. Banerjee and B. R. Majhi, J. High Energy Phys. (on line) 06, 095 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Penrose, Riv. Nuovo Cimento Soc. Ital. Fis. 1, 252 (1969).

    Article  ADS  Google Scholar 

  35. M. Richartz and A. Saa, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 84, 104021 (2011).

    Article  Google Scholar 

  36. V. Moretti and N. Pinamonti, arXiv:1011.2994v2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, M., Javed, W. Charged fermions tunneling from regular black holes. J. Exp. Theor. Phys. 115, 782–788 (2012). https://doi.org/10.1134/S1063776112090129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112090129

Keywords

Navigation