Skip to main content
Log in

Dynamics of charge carriers at the place of the formation of a muonic atom in diamond and silicon

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The space-time distribution of charge carriers at the place of the location of a muonic atom formed when a negative muon is captured by an atom of the lattice has been numerically simulated taking into account the self-consistent electric field. The results of μSR experiments with negative muons in diamond crystals have been explained and reasons for the difference in the behavior of the spin polarization of the negative muon in boron-doped diamond and in silicon have been revealed. The condition of the validity of the analytical solution of this problem has been obtained. It has been shown that the muonic atom in diamond, in contrast to silicon, does not form a neutral acceptor center in the paramagnetic state during the muon experiment and remains in the diamagnetic state of a positive ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Smilga and Yu. M. Belousov, The Muon Method in Science (Nauka, Moscow, 1991; Nova Science, New York, 1994).

    Google Scholar 

  2. A. O. Vaisenberg, Mu-Meson (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  3. J. Imazato, K. Nagamine, T. Yamazaki, B. D. Patterson, E. Holzschuh, and R. F. Kiefl, Phys. Rev. Lett. 53, 1849 (1984).

    Article  ADS  Google Scholar 

  4. H. Keller, R. F. Kiefl, Hp. Baumeler, W. Kündig, B. D. Patterson, J. Imazato, K. Nishiyama, K. Nagamine, T. Yamazaki, and R. I. Grynszpan, Hyperfine Interact. 31, 461 (1986).

    Article  ADS  Google Scholar 

  5. M. Koch, K. Meier, J. Major, A. Seeger, W. Sigle, W. Staiger, W. Templ, E. Widmann, R. Abela, V. Claus, M. Hampele, and D. Herlach, Hyperfine Interact. 65, 1039 (1991).

    Article  ADS  Google Scholar 

  6. V. N. Gorelkin, V. G. Grebinnik, K. I. Gritsai, V. N. Duginov, V. A. Zhukov, T. N. Mamedov, V. G. Olshevsky, V. Yu. Pomyakushin, B. F. Kirillov, B. A. Nikolsky, A. V. Pirogov, and A. N. Ponomarev, Phys. At. Nucl. 56, 1316 (1993).

    Google Scholar 

  7. T. N. Mamedov, I. L. Chaplygin, V. N. Duginov, V. G. Grebinnik, K. I. Gritsaj, V. G. Olshevsky, V. Yu. Pomjakushin, A. V. Stoykov, V. A. Zhukov, I. A. Krivosheev, B. A. Nikolsky, A. N. Ponomarev, and V. N. Gorelkin, Hyperfine Interact. 105, 345 (1997).

    Article  ADS  Google Scholar 

  8. T. N. Mamedov, K. I. Gritsaj, A. V. Stoykov, D. G. Andrianov, V. N. Gorelkin, D. Herlach, U. Zimmermann, O. Kormann, J. Major, and M. Schefzik, Physica B (Amsterdam) 289–290, 574 (2000).

    Google Scholar 

  9. T. N. Mamedov, A. V. Stoikov, and V. N. Gorelkin, Fiz. Elem. Chastits At. Yad. 33, 1005 (2002).

    Google Scholar 

  10. T. N. Mamedov, V. N. Duginov, V. G. Grebennik, K. I. Gritsaj, V. G. Olshevsky, V. Yu. Pomjakushin, V. A. Zhukov, B. F. Kirillov, B. A. Nikolsky, A. V. Pirogov, A. N. Ponomarev, V. A. Suetin, and V. N. Gorelkin, Hyperfine Interact. 86, 717 (1994).

    Article  ADS  Google Scholar 

  11. V. N. Gorelkin, V. G. Grebennik, K. I. Gritsai, V. A. Zhukov, T. N. Mamedov, V. G. Ol’shevski, V. Yu. Pomyakushin, A. V. Stokov, I. L. Chaplygin, I. A. Krivosheev, B. A. Nikol’skii, and A. N. Ponomarev, JETP Lett. 63(7), 566 (1996).

    Article  ADS  Google Scholar 

  12. T. N. Mamedov, I. L. Chaplygin, V. N. Duginov, V. N. Gorelkin, D. Herlach, J. Major, A. V. Stoykov, M. Schefzik, and U. Zimmermann, J. Phys.: Condens. Matter 11, 2849 (1999).

    Article  ADS  Google Scholar 

  13. A. S. Baturin, V. N. Gorelkin, and V. R. Solov’ev, JETP 99(2), 352 (2004).

    Article  ADS  Google Scholar 

  14. J. H. Brewer, S. R. Kreitzman, G. M. Luke, G. D. Morris, C. Niedermayer, T. M. Riseman, W. N. Hardy, E. P. Krasnoperov, E. E. Meilikhov, and V. P. Smilga, JETP Lett. 53(12), 600 (1991).

    ADS  Google Scholar 

  15. W. Higemoto, K. Sotoh, N. Nishida, K. Nishiyama, and K. Nagamine, Hyperfine Interact. 106, 39 (1997).

    Article  ADS  Google Scholar 

  16. E. P. Krasnoperov, E. E. Meilikhov, C. Baines, D. Herlach, G. Solt, U. Zimmermann, and D. G. Eschenko, JETP Lett. 61(12), 993 (1995).

    ADS  Google Scholar 

  17. Yu. M. Belousov and V. P. Smilga, JETP 79(5), 811 (1994).

    ADS  Google Scholar 

  18. Yu. M. Belousov, JETP 104(2), 215 (2007).

    Article  ADS  Google Scholar 

  19. T. N. Mamedov, D. Adnreika, A. S. Baturin, D. Herlach, V. N. Gorelkin, K. I. Gritsaj, V. G. Ralchenko, A. V. Stoykov, V. A. Zhukov, and U. Zimmermann, Physica B (Amsterdam) 374–375, 390 (2006).

    Google Scholar 

  20. T. N. Mamedov, A. G. Dutov, and D. Gerlakh, V. N. Gorelkin, and K. I. Gritsai, Soobshch. Ob’edin. Inst. Yad. Issled., Dubna, No. P14-2004-104 (2004).

  21. T. N. Mamedov, A. S. Baturin, V. D. Blank, D. Gerlakh, V. N. Gorelkin, and K. I. Gritsai, Soobshch. Ob’edin. Inst. Yad. Issled., Dubna, No. P14-2007-12 (2007).

  22. A. S. Baturin, V. N. Gorelkin, T. N. Mamedov, V. R. Solov’ev, and I. V. Chernousov, Soobshch. Ob’edin. Inst. Yad. Issled., Dubna, No. P14-2007-188 (2007).

  23. A. S. Baturin, V. N. Gorelkin, V. S. Rastunkov, and V. R. Soloviev, Physica B (Amsterdam) 374-375, 340 (2006).

    ADS  Google Scholar 

  24. A. S. Baturin, V. N. Gorelkin, V. R. Solov’ev, and I. V. Chernousov, Plasma Phys. Rep. 34(5), 392 (2008).

    Article  ADS  Google Scholar 

  25. V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Sov. Phys. Semicond. (Leningrad) 12(1), 1 (1978).

    Google Scholar 

  26. N. L. Aleksandrov, A. M. Konchakov, A. P. Napartovich, and A. N. Starostin, Khim. Plazmy, No. 11, 3 (1984).

  27. O. Mandelung, Semiconductors: Data Handbook (Springer, Berlin, 2004).

    Book  Google Scholar 

  28. B. M. Smirnov, Ions and Excited Atoms in the Plasma (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  29. M. Lax, Phys. Rev. 119, 1502 (1960).

    Article  ADS  Google Scholar 

  30. V. N. Abakumov and I. N. Yassievich, Sov. Phys. JETP 44(2), 345 (1976).

    ADS  Google Scholar 

  31. R. P. Fedorenko, Introduction to Computational Physics (Moscow Institute of Physics and Technology, Moscow, 1994) [in Russian].

    Google Scholar 

  32. Yu. M. Belousov, J. Phys.: Conf. Ser. 343, 012013 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Solov’ev.

Additional information

Original Russian Text © S.A. Antipov, Yu.M. Belousov, V.R. Solov’ev, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 5, pp. 982–993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antipov, S.A., Belousov, Y.M. & Solov’ev, V.R. Dynamics of charge carriers at the place of the formation of a muonic atom in diamond and silicon. J. Exp. Theor. Phys. 115, 866–875 (2012). https://doi.org/10.1134/S1063776112090026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112090026

Keywords

Navigation