Skip to main content
Log in

Universal relationships for the phonon spectra in BCC, FCC, and HCP crystals with a short-range interatomic interaction

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The frequencies of the phonon branches that correspond to the vibrations of the close-packed atomic planes in bcc, fcc, and hcp crystals with short-range interatomic interaction are shown to be described by a universal relationship, which only contains two parameters for each branch, for any polarization λ. These phonon branches correspond to the (ξ, ξ, 0) direction in bcc crystals, the (ξ, ξ, ξ) direction in fcc crystals, and the (0, 0, ξ) direction in hcp crystals. This universal relationship can only be violated by long-range interactions, namely, the interactions outside the sixth coordination shell in a bcc crystal, the fifth coordination shell in an fcc crystal, and the eleventh or tenth coordination shell in an hcp crystal. The effect of these long-range interactions for each phonon branch can be quantitatively characterized by certain parameters Δ nλ, which are simply expressed in terms of the frequencies of three phonons of the branch. The values of these parameters are presented for all bcc, fcc, and hcp metals whose phonon spectra are measured. In most cases, the proposed relationships for the frequencies are found to be fulfilled accurate to several percent. In the cases where the Δ nλ parameters are not small, they can give substantial information on the type and scale of long-range interaction effects in various metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Schober and P. H. Dederichs, in Landolt-Börnstein, Vol. 13A: Metals (Springer, Berlin, 1981), p. 1.

    Google Scholar 

  2. Max Born and Kun Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954; Inostrannaya Literatura, Moscow, 1958).

    MATH  Google Scholar 

  3. V. G. Vaks and K. Yu. Khromov, Phys. Rev. B: Condens. Matter 75, 212103 (2007).

    Article  ADS  Google Scholar 

  4. V. G. Vaks and K. Yu. Khromov, JETP 106(3), 495 (2008).

    Article  ADS  Google Scholar 

  5. N. Wakabayashi, R. H. Scherm, and H. G. Smith, Phys. Rev. B: Condens. Matter 25, 5122 (1982).

    Article  ADS  Google Scholar 

  6. D. J. Hudson, Lectures on Elementary Statistics and Probability (European Organization for Nuclear Research, Geneva, 1963; Mir, Moscow, 1970).

    Google Scholar 

  7. J. Mizuki, Y. Chen, K.-M. Ho, and C. Stassis, Phys. Rev. B: Condens. Matter 32, 666 (1985).

    Article  ADS  Google Scholar 

  8. J. Mizuki and C. Stassis, Phys. Rev. B: Condens. Matter 32, 8372 (1985), Phys. Rev. B: J. Mizuki and C. Stassis, Condens. Matter 35, 872 (1987).

    Article  ADS  Google Scholar 

  9. C. Stassis, J. Zaretsky, and N. Wakabayashi, Phys. Rev. Lett. 41, 1726 (1978).

    Article  ADS  Google Scholar 

  10. R. Collela and B. W. Batterman, Phys. Rev. B: Solid State 1, 3913 (1970).

    Article  ADS  Google Scholar 

  11. B. M. Powell, P. Martel, and A. D. B. Woods, Can. J. Phys. 55, 1601 (1977).

    Article  ADS  Google Scholar 

  12. A. D. B. Woods, Phys. Rev. Sect. A 136, 781 (1964).

    ADS  Google Scholar 

  13. C. Van Dijk and J. Bergsma, in Neutron Inelastic Scattering (IAEA, Vienna, 1968), Vol. 1, p. 233.

    Google Scholar 

  14. J. Neuhaus, W. Petry, and A. Krimmel, Physica B (Amsterdam) 234–236, 897 (1997).

    Google Scholar 

  15. J. Zaretsky and C. Stassis, Phys. Rev. B: Condens. Matter 35, 4500 (1987).

    Article  ADS  Google Scholar 

  16. C. Stassis, T. Gould, O. D. McMasters, K. A. Gschneidner, and R. M. Nicklow, Phys. Rev. B: Condens. Matter 19, 5746 (1979).

    Article  ADS  Google Scholar 

  17. R. Stedman, Z. Amilius, R. Pauli, and O. Sundin, J. Phys. F: Met. Phys. 6, 157 (1976).

    Article  ADS  Google Scholar 

  18. R. Pynn and G. L. Squires, Proc. R. Soc. London, Ser. A 326, 347 (1972).

    Article  ADS  Google Scholar 

  19. L. Almquist and R. Stedman, J. Phys. F: Met. Phys. 1, 785 (1971).

    Article  ADS  Google Scholar 

  20. A. A. Chernyshov, V. V. Pushkarev, A. Yu. Rumyantsev, R. B. Dorner, and R. Pynn, J. Phys. F: Met. Phys. 9, 1983 (1979); A. A. Chernyshov, V. V. Pushkarev, A. Yu. Rumyantsev, R. B. Dorner, and R. Pynn, J. Phys. F: Met. Phys. 11, 365 (1980).

    Article  ADS  Google Scholar 

  21. T. G. Worlton and R. E. Schmunk, Phys. Rev. B: Solid State 3, 4115 (1971).

    Article  ADS  Google Scholar 

  22. C. Stassis, D. Arch, J. Zaretsky, and O. D. McMasters, Phys. Rev. B: Condens. Matter 24, 730 (1981).

    Article  ADS  Google Scholar 

  23. J. Pleschiutschnig, O. Blaschko, and W. Reichardt, Phys. Rev. B: Condens. Matter 41, 975 (1990).

    Article  ADS  Google Scholar 

  24. R. Heid, L. Pintschovius, W. Reichardt, and K.-P. Bohnen, Phys. Rev. B: Condens. Matter 61, 12059 (2000).

    Article  ADS  Google Scholar 

  25. V. G. Vaks, Interatomic Interactions and Bonding in Solids (IzdAT, Moscow, 2002), Chap. 13 [in Russian].

    Google Scholar 

  26. B. Straus, F. Frey, W. Petry, J. Trampenau, K. Nicolaus, S. M. Shapiro, and J. Bossy, Phys. Rev. B: Condens. Matter 54, 6035 (1996).

    Article  ADS  Google Scholar 

  27. C. M. Varma and W. Weber, Phys. Rev. B: Condens. Matter 19, 6142 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vaks.

Additional information

Original Russian Text © V.G. Vaks, I.A. Zhuravlev, A.D. Zabolotskii, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 3, pp. 530–539.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaks, V.G., Zhuravlev, I.A. & Zabolotskii, A.D. Universal relationships for the phonon spectra in BCC, FCC, and HCP crystals with a short-range interatomic interaction. J. Exp. Theor. Phys. 114, 465–473 (2012). https://doi.org/10.1134/S1063776112020124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112020124

Keywords

Navigation