Skip to main content
Log in

Some aspects of virtual black holes

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We first consider consistently third-quantize modified gravity. We then analyze certain aspects of virtual black holes in this third-quantized modified gravity. We see how a statistical mechanical origin for the Bekenstein-Hawking entropy naturally arises in this model. Furthermore, the area and hence the entropy of a real macroscopic black hole is quantized in this model. Virtual black holes cause a loss of quantum coherence, which gives an intrinsic entropy to all physical systems that can be used to define a direction of time and hence provide a solution to the problem of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Wheeler, Ann. Phys. (New York) 2, 604 (1957).

    Article  ADS  MATH  Google Scholar 

  2. S. W. Hawking, Nucl. Phys. B 114, 349 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  3. S. W. Hawking, Phys. Rev. D: Part. Fields 37, 904 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  4. V. A. Rubakov, Nucl. Phys. B 453, 395 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. Ambjorn, S. Jain, J. Jurkiewicz, and C. F. Kristjansen, Phys. Lett. B 305, 208 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Preskill, S. P. Trivedi, and M. B. Wise, Phys. Lett. B 223, 26 (1989).

    Article  ADS  Google Scholar 

  7. S. Coleman, Nucl. Phys. B 310, 643 (1988).

    Article  ADS  Google Scholar 

  8. J. Preskill, Nucl. Phys. B 232, 141 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  9. S. W. Hawking, Phys. Rev. D: Part. Fields 53, 3099 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  10. S. W. Hawking and S. F. Ross, Phys. Rev. D: Part. Fields 56, 6403 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Prestidge, Phys. Rev. D: Part. Fields 58, 124022 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Strominger, Phys. Rev. Lett. 52, 1733 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  13. S. W. Hawking, Phys. Lett. B 195, 337 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Teitelboim, Phys. Rev. D: Part. Fields 25, 3159 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  15. K. Kueha, J. Math. Phys. 22, 2640 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  16. M. A. Castagnino, A. Gangui, F. D. Mazzitelli, and I. I. Tkachev, Classical Quantum Gravity 10, 2495 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  17. Y. Peleg, Classical Quantum Gravity 8, 827 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. S. B. Giddings and A. Strominger, Nucl. Phys. B 321, 481 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  19. L. O. Pimentel and C. Mora, Phys. Lett. A 280, 191 (2001).

    Article  ADS  MATH  Google Scholar 

  20. Y. Ohkuwa, Int. J. Mod. Phys. A 13, 4091 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. T. Thiemann, Lect. Notes Phys. 721, 185 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Nicolai, K. Peeters, and M. Zamaklar, Classical Quantum Gravity 22, 193 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Alexandrov and P. Roche, Phys. Rep. 506, 41 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  24. W. Fairbairn and E. R. Livine, Classical Quantum Gravity 24, 5277 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. H. Steinacker, J. Phys.: Conf. Ser. 174, 012044 (2009).

    Article  ADS  Google Scholar 

  26. A. Belavin and G. Tarnopolsky, JETP Lett. 92(4), 257 (2010).

    Article  ADS  Google Scholar 

  27. S. Capozziello, V. F. Cardone, S. Carloni, and A. Troisi, Phys. Lett. A 326, 292 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. J. Bekenstein, Phys. Rev. D: Part. Fields 70, 083509 (2004).

    Article  ADS  Google Scholar 

  29. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. E. E. Flanagan, Classical Quantum Gravity 21, 417 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Capozziello and R. Garattini, Classical Quantum Gravity 24, 1627 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. A. Vilenkin, Phys. Rev. D: Part. Fields 39, 2216 (1989).

    Article  Google Scholar 

  33. K. V. Kuchar, J. Math. Phys. 22, 2640 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. M. Mc. Guigan, Phys. Rev. D: Part. Fields 38, 3031 (1988).

    Article  ADS  Google Scholar 

  35. N. D. Birrell and P. C. W. Davies, Quantum Field in Curved Space (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  36. G. A. Camelia, M. Arzano, and A. Procaccini, Phys. Rev. D: Part. Fields 70, 107501 (2004).

    Article  ADS  Google Scholar 

  37. J. D. Bekenstein, Lett. Nuovo Cimento Soc. Ital. Fis. 4, 737 (1972).

    Article  ADS  Google Scholar 

  38. S. W. Hawking, Commun. Math. Phys. 87, 395 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Faizal.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faizal, M. Some aspects of virtual black holes. J. Exp. Theor. Phys. 114, 400–405 (2012). https://doi.org/10.1134/S1063776112020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112020045

Keywords

Navigation