Skip to main content
Log in

Intrinsic inhomogeneities of low-doped lanthanum manganites in the paramagnetic temperature range

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nature of the electrical resistivity for low-doped lanthanum manganites is elucidated. The electrical resistivity is described by the Efros-Shklovskii law (lnρ √ (T 0/T)−1/2, where T 0 √ 1/R ls) in the temperature range from T* ≈ 300 K ≈ T C (T C is the Curie temperature for conducting manganites) to their T C and is explained by the tunneling of carriers between localized states. The magnetoresistance is explained by a change in the size of localized states R ls in a magnetic field. The patterns of change in R ls with temperature and magnetic field strength determined from magnetotransport properties are satisfactorily described in the model of phase separation into small-radius metallic droplets in a paramagnetic matrix. The sizes R ls and their temperature dependence have been estimated through magnetic measurements. The results confirm the existence of a Griffith phase. The intrinsic inhomogeneities produced by thermodynamic phase separation determine the electrical resistivity and magnetoresistance of lanthanum manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Moreo, S. Yunoki, and E. Dagotto, Science (Washington) 283, 2034 (1999).

    Article  Google Scholar 

  2. E. Dagotto, New J. Phys. 7, 67 (2005).

    Article  ADS  Google Scholar 

  3. Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).

    Article  ADS  Google Scholar 

  4. J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 87, 277202 (2001).

    Article  ADS  Google Scholar 

  5. E. L. Nagaev, Phys.—Usp. 39(8), 781 (1996); E. L. Nagaev, JETP Lett. 6(1), 18 (1967).

    Article  ADS  Google Scholar 

  6. F. Moussa, M. Hennion, G. Biotteau, J. Rodríguez-Carvajal, L. Pinsard, and A. Revcolevschi, Phys. Rev. B: Condens. Matter 60, 12299 (1999); G. Biotteau, M. Hennion, F. Moussa, J. Rodríguez-Carvajal, L. Pinsard, A. Revcolevschi, Y. M. Mukovskii, and D. Shulyatev, Phys. Rev. B: Condens. Matter 64, 104421 (2001).

    Article  ADS  Google Scholar 

  7. P. Kober-Lehouelleur, F. Moussa, M. Hennion, A. Ivanov, L. Pinsard-Gaudart, and A. Revcolevschi, Phys. Rev. B: Condens. Matter 70, 144409 (2004).

    Article  ADS  Google Scholar 

  8. P. A. Algarabel, J. M. De Teresa, J. Blasco, M. R. Ibarra, Cz. Kapusta, M. Sikora, D. Zajac, P. C. Riedi, and C. Ritter, Phys. Rev. B: Condens. Matter 67, 134402 (2003).

    Article  ADS  Google Scholar 

  9. J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Rit- ter, C. Marquina, J. Blasco, J. García, A. del Moral, and Z. Arnold, Nature (London) 386, 256 (1997); M. R. Ibarra and J. M. De Teresa, J. Magn. Magn. Mater. 177–181, 846 (1998).

    Article  ADS  Google Scholar 

  10. Pengcheng Dai, J. A. Fernandez-Baca, N. Wakabayashi, E. W. Plummer, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett. 85, 2553 (2000); J. Wu, J. W. Lynn, C. J. Glinka, J. Burley, H. Zheng, J. F. Mitchell, and C. Leighton, Phys. Rev. Lett. 94, 037201 (2005); C. He, M. A. Torija, J. Wu, J. W. Lynn, H. Zheng, J. F. Mitchell, and C. Leighton, Phys. Rev. B: Condens. Matter 76, 014401 (2007); D. N. Argyriou, J. W. Lynn, R. Osborn, B. Campbell, J. F. Mitchell, U. Ruett, H. N. Bordallo, A. Wildes, and C. D. Ling, Phys. Rev. Lett. 89, 036401 (2002).

    Article  ADS  Google Scholar 

  11. M. B. Salamon and S. H. Chun, Phys. Rev. B: Condens. Matter 68, 014401 (2003); N. A. Babushkina, E. A. Chistotina, K. I. Kugel’, A. L. Rakhmanov, O. Yu. Gorbenko, and A. R. Kaul’, Phys. Solid State 45, 480 (2003); N. Rama, M. S. Ramachandra Rao, V. Sankaranarayanan, P. Majewski, S. Gepraegs, M. Opel, and R. Gross, Phys. Rev. B: Condens. Matter 70, 224424 (2004); C. Magen, P. A. Algarabel, L. Morellon, J. P. Araíjo, C. Ritter, M. R. Ibarra, A. M. Pereira, and J. B. Sousa, Phys. Rev. Lett. 96, 167201 (2006); N. N. Loshkareva, E. V. Mostovshchikova, N. I. Solin, Yu. P. Sukhorukov, S. N. Tugushev, and S. V. Naumov, Europhys. Lett. 76, 933 (2006); J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, J. Hemberger, R. M. Eremina, V. A. Ivanshin, A. M. Balbashov, G. Jug, A. Loidl, T. Kimura, and Y. Tokura, Phys. Rev. Lett. 95, 257202 (2005).

    Article  ADS  Google Scholar 

  12. M. Yu. Kagan and K. I. Kugel’, Phys.-Usp. 44(6), 553 (2001).

    Article  ADS  Google Scholar 

  13. R. B. Griffits, Phys. Rev. Lett. 23, 17 (1969).

    Article  ADS  Google Scholar 

  14. E. Rozenberg, M. Auslender, A. I. Shames, G. Gorodetsky, and Ya. M. Mukovskii, Appl. Phys. Lett. 92, 222506 (2008); E. Rozenberg, M. Auslender, I. Felner, A. I. Shames, G. Gorodetsky, and Ya. M. Mukovskii, IEEE Trans. Magn. 46, 1299 (2010).

    Article  ADS  Google Scholar 

  15. B. I. Belevtsev, Low Temp. Phys. 30(5), 421 (2004).

    Article  ADS  Google Scholar 

  16. W. Jiang, X. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin, Phys. Rev. Lett. 99, 177203 (2007); W. Jiang, X. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin, Phys. Rev. B: Condens. Matter 77, 064424 (2008).

    Article  ADS  Google Scholar 

  17. A. Souza, J. J. Neumeier, and Y.-K. Yu, Phys. Rev. B: Condens. Matter 78, 014436 (2008).

    Article  ADS  Google Scholar 

  18. M. Yu. Kagan, A. V. Klaptsov, I. V. Brodsky, K. I. Kugel, A. O. Sboychakov, and A. L. Rakhmanov, J. Phys. A: Math. Gen. 36, 9155 (2003).

    Article  ADS  MATH  Google Scholar 

  19. A. L. Rakhmanov, K. I. Kugel, Ya. M. Blanter, and M. Yu. Kagan, Phys. Rev. B: Condens. Matter 63, 174424 (2001); A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel’, M. Yu. Kagan, and I. V. Brodsky, JETP 95 (4), 753 (2002); K. I. Kugel, A. L. Rakhmanov, A. O. Sboychakov, M. Yu. Kagan, I. V. Brodsky, and A. V. Klaptsov, JETP 98 (3), 572 (2004).

    Article  ADS  Google Scholar 

  20. F. Moussa, M. Hennion, J. Rodriguez-Carvajal, H. Moudden, L. Pinsard, and A. Revcolevschi, Phys. Rev. B: Condens. Matter 54, 15149 (1996).

    Article  ADS  Google Scholar 

  21. A. M. Balbashov, S. G. Karabashev, Ya. M. Mukovskiy, and S. A. Zverkov, J. Cryst. Growth 167, 365 (1996).

    Article  ADS  Google Scholar 

  22. S. F. Dubinin, V. E. Arkhipov, S. G. Teploukhov, and V. D. Parkhomenko, Phys. Solid State 45(11), 2147 (2003).

    Article  ADS  Google Scholar 

  23. N. N. Loshkareva, A. V. Korolev, T. I. Arbuzova, N. I. Solin, N. A. Viglin, I. B. Smolyak, N. G. Bebenin, Yu. P. Sukhorukov, S. V. Naumov, N. V. Kostromitina, and A. M. Balbashov, Phys. Solid State 44(10), 1916 (2002).

    Article  ADS  Google Scholar 

  24. N. I. Solin, S. V. Naumov, T. I. Arbuzova, N. V. Kos- tromitina, M. V. Ivanchenko, A. A. Saranin, and N. M. Chebotaev, Phys. Solid State 50(10), 1908 (2008).

    Article  ADS  Google Scholar 

  25. N. I. Solin, JETP 101(3), 535 (2005).

    Article  ADS  Google Scholar 

  26. N. I. Solin, JETP Lett. 91(12), 675 (2010).

    Article  ADS  Google Scholar 

  27. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, Berlin, 1984).

    Google Scholar 

  28. J. Zhang and B. I. Shklovskii, Phys. Rev. B: Condens. Matter 70, 115317 (2004).

    Article  ADS  Google Scholar 

  29. H. Nojiri, K. Kaneko, and M. Motokawa, Phys. Rev. B: Condens. Matter 60, 4142 (1999); Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, and S. Katano, Phys. Rev. Lett. 77, 904 (1996).

    Article  ADS  Google Scholar 

  30. R. Senis, V. Laukhin, B. Martínez, J. Fontcuberta, X. Obradors, A. A. Arsenov, and Y. M. Mukovskii, Phys. Rev. B: Condens. Matter 57, 14680 (1998); N. I. Solin and S. V. Naumov, Phys. Solid State 45 (3), 486 (2003).

    Article  ADS  Google Scholar 

  31. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973); S. Sankar, A. E. Berkowitz, and D. J. Smith, Phys. Rev. B: Condens. Matter 62, 14273 (2000).

    Article  ADS  Google Scholar 

  32. J. S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976).

    Article  ADS  Google Scholar 

  33. C. M. Varma, Phys. Rev. B: Condens. Matter 54, 7328 (1996).

    Article  ADS  Google Scholar 

  34. L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett. 79, 1710 (1997).

    Article  ADS  Google Scholar 

  35. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B: Condens. Matter 51, 14103 (1995).

    Article  ADS  Google Scholar 

  36. R. A. Smith, Semiconductors (Cambridge University Press, Cambridge, 1959; Inostrannaya Literatura, Moscow, 1962), Chap. 5.

    MATH  Google Scholar 

  37. N. I. Solin, V. A. Kazantsev, L. D. Fal’kovskaya, and S. V. Naumov, Phys. Solid State 47(10), 1900 (2005).

    Article  ADS  Google Scholar 

  38. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30S, 120 (1959).

    Article  ADS  Google Scholar 

  39. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974), Chap. 23.

    Google Scholar 

  40. A. V. Korolyov, V. Ye. Arkhipov, V. S. Gaviko, Ya. Mukovskii, A. A. Arsenov, T. P. Lapina, S. D. Bader, J. S. Jiang, and V. I. Nizhankovskii, J. Magn. Magn. Mater. 213(1–2), 63 (2000).

    Article  ADS  Google Scholar 

  41. R. S. Fishman, F. Popescu, G. Alvarez, T. Maier, and J. Moreno, Phys. Rev. B: Condens. Matter 73, 140405R (2006).

    Article  ADS  Google Scholar 

  42. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Solin.

Additional information

Original Russian Text © N.I. Solin, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 1, pp. 109–121.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solin, N.I. Intrinsic inhomogeneities of low-doped lanthanum manganites in the paramagnetic temperature range. J. Exp. Theor. Phys. 114, 96–106 (2012). https://doi.org/10.1134/S106377611116014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611116014X

Keywords

Navigation