Skip to main content
Log in

Charge separation in CO oxidation involving supported gold clusters

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The character of the catalytic oxidation of CO by supported gold cluster catalysts is analyzed with emphasis on the unique characteristics of this process. The scheme of this process used here has the reagent CO molecule captured in the interface between the cluster and support, with oxygen molecules or atoms located on the support surface to react with the CO. (Other models have also been presented.) The experimental data indicate that, together with configurational transitions that lead to the CO molecule joining an oxygen atom to form the CO2 molecule, the charge separation due to capture of the CO molecule by the supported gold cluster is important. The process of release of the CO2 molecule results in charge exchange; the time for this process is relatively long because of the large distance separating positive and negative charges, a distance exceeding the cluster radius. This provides a high efficiency of the oxidation of CO with this catalyst despite the relatively high activation energy for the configurational transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Coquet, K. L. Howard, and J. Willock, Chem. Soc. Rev. 37, 2046 (2008).

    Article  Google Scholar 

  2. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117, 6982 (2002).

    Article  ADS  Google Scholar 

  3. X. Xing, B. Yoon, U. Landman, and J. H. Parks, Phys. Rev. B: Condens. Matter 74, 165423 (2006).

    Article  ADS  Google Scholar 

  4. J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science (Washington) 299, 864 (2003).

    Article  ADS  Google Scholar 

  5. H. Häkkinen, B. Yoon, U. Landman, X. Li, H.-J. Zhai, and L.-S. Wang, J. Phys. Chem. A 107, 6168 (2003).

    Article  Google Scholar 

  6. X. Gu, M. Ji, S. H. Wei, and X. G. Gong, Phys. Rev. B: Condens. Matter 70, 205401 (2004).

    Article  ADS  Google Scholar 

  7. W. Fa and J. Dong, J. Chem. Phys. 124, 114310 (2006).

    Article  ADS  Google Scholar 

  8. H. Häkkinen, M. Moseler, O. Kostko, N. Morgner, M. A. Hoffmann, and B. V. Issendorff, Phys. Rev. Lett. 93, 093401 (2004).

    Article  ADS  Google Scholar 

  9. J. Oviedo and R. E. Palmer, J. Chem. Phys. 117, 9548 (2002).

    Article  ADS  Google Scholar 

  10. E. M. Fernández, J. M. Soler, I. L. Garzón, and L. C. Balbás, Phys. Rev. B: Condens. Matter 70, 165403 (2004).

    Article  ADS  Google Scholar 

  11. H. Arslan and M. H. Güven, New J. Phys. 7, 60 (2005).

    Article  ADS  Google Scholar 

  12. H. Arslan and M. H. Güven, Acta Phys. Slovaca 56, 511 (2006).

    Google Scholar 

  13. E. K. Yildirim, M. Atis, and Z. B. Guvenc, Phys. Scr. 75, 111 (2007).

    Article  ADS  Google Scholar 

  14. M. Haruta, Catal. Today 36, 153 (1987).

    Article  Google Scholar 

  15. M. Haruta, T. Kobayashi, H. Sato, and N. Yamada, Chem. Lett. 2, 405 (1987).

    Article  Google Scholar 

  16. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989).

    Article  Google Scholar 

  17. M. Haruta, Chem. Rec. 3, 75 (2003).

    Article  Google Scholar 

  18. V. A. Bondzie, S. C. Parker and C. T. Campbell, Catal. Lett. 63, 143 (1999).

    Article  Google Scholar 

  19. C. M. Chang and M. Y. Chou, Phys. Rev. Lett. 93, 133401 (2004).

    Article  ADS  Google Scholar 

  20. A. A. Herzig, C. J. Kiely, A. F. Carley, P. Landon, and G. J. Hutchings, Science (Washington) 321, 1331 (2008).

    Article  ADS  Google Scholar 

  21. A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 103, 9573 (1999).

    Article  Google Scholar 

  22. B. K. Min, A. R. Alemozafar, D. Pinnaduwage, X. Deng, and C. M. Friend, J. Phys. Chem. B 110, 19833 (2006).

    Article  Google Scholar 

  23. B. K. Min and C. M. Friend, Chem. Rev. 107, 2709 (2007).

    Article  Google Scholar 

  24. D. J. Wales, J. P. K. Doye, M. A. Miller, P. N. Mortenson, and T. R. Walsh, Adv. Chem. Phys. 115, 1 (2000).

    Article  Google Scholar 

  25. D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  26. B. M. Smirnov and R. S. Berry, Phase Transitions in Simple Atomic Systems (Springer, Heidelberg, 2007).

    Google Scholar 

  27. M. R. Hoare and P. Pal, Adv. Phys. 20, 161 (1971); M. R. Hoare and P. Pal, Adv. Phys. 24, 645 (1975).

    Article  ADS  Google Scholar 

  28. M. R. Hoare, Adv. Chem. Phys. 40, 49 (1979).

    Article  Google Scholar 

  29. F. H. Stillinger and T. A. Weber, Phys. Rev. A: At., Mol., Opt. Phys. 25, 978 (1982).

    Article  ADS  Google Scholar 

  30. F. H. Stillinger and T. A. Weber, Phys. Rev. A: At., Mol., Opt. Phys. 28, 2408 (1983).

    Article  ADS  Google Scholar 

  31. B. Vekhter, K. D. Ball, J. Rose, and R. S. Berry, J. Chem. Phys. 106, 4644 (1997).

    Article  ADS  Google Scholar 

  32. R. S. Berry and B. M. Smirnov, Phys.-Usp. 52(2), 137 (2009).

    Article  ADS  Google Scholar 

  33. J. Jellinek, T. L. Beck, and R. S. Berry, J. Chem. Phys. 84, 2783 (1986).

    Article  ADS  Google Scholar 

  34. H. L. Davies, J. Jellinek, and R. S. Berry, J. Chem. Phys. 86, 6456 (1987).

    Article  ADS  Google Scholar 

  35. R. S. Berry, T. L. Beck, H. L. Davis, and J. Jellinek, Adv. Chem. Phys. 90, 75 (1988).

    Article  Google Scholar 

  36. H. P. Cheng and R. S. Berry, Phys. Rev. A: At., Mol., Opt. Phys. 45, 7969 (1992).

    Article  ADS  Google Scholar 

  37. R. S. Berry, Chem. Rev. (Washington) 93, 2379 (1993).

    Google Scholar 

  38. R. S. Berry, in Theory of Atomic and Molecular Clusters, Ed. by J. Jellinek (Springer, Berlin, 1999), p. 1.

    Chapter  Google Scholar 

  39. G. K. Boreskov, Heterogeneous Catalysis (Nova Science, New York, 2003).

    Google Scholar 

  40. G. Ertl, H. Knösinger, F. Schüth, and J. Weitkamp, Handbook of Heterogeneous Catalysis (Wiley, Weinheim, 2008).

    Book  Google Scholar 

  41. G. Rothenberg, Catalysis: Concepts and Green Applications (Wiley, Weinheim, 2008).

    Google Scholar 

  42. K. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience (Wiley, Weinheim, 2008).

    Google Scholar 

  43. M. Haruta, Catal. Today. 36, 153 (1997).

    Article  Google Scholar 

  44. M. Haruta, CATTECH 6(3), 102 (2002).

    Article  Google Scholar 

  45. G. C. Bond, C. Louis, and D. T. Thompson, Catalysis by Gold (Imperial College Press, London, 2006).

    Book  Google Scholar 

  46. H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, and U. Landman, Angew. Chem., Int. Ed. 42(11), 1297 (2003).

    Article  Google Scholar 

  47. S. Arrhenius, Z. Phys. Chem. 28, 317 (1899).

    Google Scholar 

  48. G. C. Bond, Metal-Catalysed Reactions of Hydrocarbons (Springer, New York, 2005).

    Google Scholar 

  49. U. Heiz, T. M. Bernhardt, and U. Landman, in: Nanocatalysis, Ed. by U. Heiz and U. Landman (Wiley, Berlin, 2007).

    Chapter  Google Scholar 

  50. C. Harding, V. Habilpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, J. Am. Chem. Soc. 131, 538 (2009).

    Article  Google Scholar 

  51. M. Moseler, H. Häkkinen, and U. Landman, Phys. Rev. Lett. 89, 176103 (2002).

    Article  ADS  Google Scholar 

  52. K. Koga, T. Ikeshoji, and K. Sugarawa, Phys. Rev. Lett. 92, 115507 (2004).

    Article  ADS  Google Scholar 

  53. C. L. Cleveland, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 81, 2036 (1998).

    Article  ADS  Google Scholar 

  54. Y. G. Chushak and L. S. Bartell, J. Phys. Chem. B 105, 11605 (2001).

    Article  Google Scholar 

  55. H. S. Nam, N. M. Hwang, B. D. Yu, and J.-K. Yoon, Phys. Rev. Lett. 89, 275502 (2002).

    Article  ADS  Google Scholar 

  56. R. S. Berry and B. M. Smirnov, J. Chem. Phys. 130, 064302 (2009).

    Article  ADS  Google Scholar 

  57. H. S. W. Massey, Rep. Prog. Phys. 12, 248 (1949).

    Article  ADS  Google Scholar 

  58. L. M. Molina and B. Hammer, Phys. Rev. B: Condens. Matter 69, 155424 (2004).

    Article  ADS  Google Scholar 

  59. L. M. Molina and B. Hammer, Appl. Catal., A 291, 21 (2005).

    Article  Google Scholar 

  60. R. Coquet, G. J. Hutchings, S. H. Taylor, and D. J. Willock, J. Mater. Chem. 16, 1978 (2006).

    Article  Google Scholar 

  61. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, London, 1980).

    Google Scholar 

  62. C. W. Corti, R. J. Holliday, and D. V. Thompson, Phys. Rev. Lett. 95, 06102 (2005).

    Google Scholar 

  63. G. J. Hutchings, Gold Bull. (London) 37, 3 (2004).

    Article  Google Scholar 

  64. C. H. Christensen and J. Nørskov, Science (Washington) 327, 278 (2010).

    Article  ADS  Google Scholar 

  65. R. E. Kunz, P. Blaudeck, K. H. Hoffmann, and R. S. Berry, J. Chem. Phys. 108, 2576 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Smirnov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, R.S., Smirnov, B.M. Charge separation in CO oxidation involving supported gold clusters. J. Exp. Theor. Phys. 113, 907–913 (2011). https://doi.org/10.1134/S1063776111140019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111140019

Keywords

Navigation