Skip to main content
Log in

Role of Water in CO Oxidation on Gold Catalysts

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Gold nanoparticles supported on base metal oxides exhibit high catalytic activity in the low temperature oxidation of CO. Numerous studies have been carried out by using powder, single crystal, and planar model catalysts together with density functional theory calculations to elucidate the reaction mechanism and the nature of the active sites. A characteristic feature of these catalysts is that the moisture contained in the catalyst and in the reactant gas markedly enhances CO2 formation rates. The promoting role of moisture, which is advantageous for the practical applications to air purifiers, can be classified into four categories: (i) maintain cationic state of gold (Au3+ or Au+), (ii) direct involvement of H2O and OH groups in CO oxidation, (iii) activation of O2 molecules, and (iv) transformation of catalytic intermediates and inhibitors (spectators) such as carbonate species. The elucidation of the role of water in CO oxidation will deepen the understanding of the unique catalysis by gold.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405

    Article  Google Scholar 

  2. Bond GC, Thompson DT (2000) Gold Bull 33:41

    Article  CAS  Google Scholar 

  3. Haruta M, Yamada N, Kobayashi T, Ijima S (1989) J Catal 115:301

    Article  CAS  Google Scholar 

  4. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  5. Wolf A, Schüth F (2002) Appl Catal A 22:1

    Article  Google Scholar 

  6. Fujitani T, Nakamura I (2011) Angew Chem Int Ed 50:10144

    Article  CAS  Google Scholar 

  7. Widmann D, Behm RJ (2011) Angew Chem Int Ed 50:10241

    Article  CAS  Google Scholar 

  8. Green IX, Tang W, Neurock M, Yates JT Jr (2011) Science 333:736

    Article  CAS  Google Scholar 

  9. Haruta M (2011) Faraday Discuss 152:11

    Article  CAS  Google Scholar 

  10. Green IX, Tang W, McEntee M, Yates JT Jr (2012) J Am Chem Soc 134:12717

    Article  CAS  Google Scholar 

  11. Pyykkö P (2008) Chem Soc Rev 37:1967

    Article  Google Scholar 

  12. Molina LM, Rasmussen MD, Hammer B (2004) J Chem Phys 120:7673

    Article  CAS  Google Scholar 

  13. Arenz M, Landman U, Heiz U (2006) ChemPhysChem 7:1871

    Article  CAS  Google Scholar 

  14. Haruta M, Takase T, Kobayashi T (1991) In: Yoshida S, Takezawa N, Ono T (eds) Catalytic science and technology, vol 1. Kodansha, Tokyo, p 331

    Google Scholar 

  15. Park ED, Lee JS (1999) J Catal 186:1

    Article  CAS  Google Scholar 

  16. Romero-Sarria F, Penkova A, Martinez LMT, Centeno MA, Hadjiivanov K, Odriozola JA (2008) Appl Catal B 84:119

    Article  CAS  Google Scholar 

  17. Karwacki CJ, Ganesh P, Kent PRC, Gordon WO, Peterson GW, Niu JJ, Gogotsi Y (2013) J Mater Chem A 1:6051

    Article  CAS  Google Scholar 

  18. Shou M, Takekawa H, Ju DY, Hagiwara T, Lu DL, Tanaka K (2006) Catal Lett 108:119

    Article  CAS  Google Scholar 

  19. Centeno MÁ, Portales C, Carrizosa I, Odriozola JA (2005) Catal Lett 102:289

    Article  CAS  Google Scholar 

  20. Ntho TA, Anderson JA, Scurrell MS (2009) J Catal 261:94

    Article  CAS  Google Scholar 

  21. Qi C, Zhu S, Su H, Lin H, Guan R (2013) Appl Catal B 138–139:104

    Article  Google Scholar 

  22. Kim TS, Gong J, Ojifinni RA, White JM, Mullins CB (2006) J Am Chem Soc 128:6282

    Article  CAS  Google Scholar 

  23. Gong J, Ojifinni RA, Kim TS, Stiehl JD, McClure SM, White JM, Mullins CB (2007) Top Catal 44:57

    Article  CAS  Google Scholar 

  24. Ojifinni RA, Froemming NS, Gong J, Pan M, Kim TS, White JM, Henkelman G, Mullins CB (2008) J Am Chem Soc 130:6801

    Article  CAS  Google Scholar 

  25. Gong J, Mullins CB (2009) Acc Chem Res 42:1063

    Article  CAS  Google Scholar 

  26. Yan T, Gong J, Flaherty DW, Mullins CB (2011) J Phys Chem C 115:2057

    Article  CAS  Google Scholar 

  27. Grisel RJH, Nieuwenhuys BE (2001) J Catal 199:48

    Article  CAS  Google Scholar 

  28. Oh HS, Costello CK, Cheung C, Kung HH, Kung MC (2001) Stud Surf Sci Catal 139:375

    Article  CAS  Google Scholar 

  29. Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Appl Catal A 232:159

    Article  CAS  Google Scholar 

  30. Costello CK, Yang JH, Law HY, Wang Y, Lin JN, Marks LD, Kung MC, Kung HH (2003) Appl Catal A 243:15

    Article  CAS  Google Scholar 

  31. Kung HH, Kung MC, Costello CK (2003) J Catal 216:425

    Article  CAS  Google Scholar 

  32. Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767

    Article  CAS  Google Scholar 

  33. Boccuzzi F, Chiorino A (2000) J Phys Chem B 104:5414

    Article  CAS  Google Scholar 

  34. Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) J Catal 202:256

    Article  CAS  Google Scholar 

  35. Lian H, Jia M, Pan W, Li Y, Zhang W, Jiang D (2005) Catal Commun 6:47

    Article  CAS  Google Scholar 

  36. Daté M, Haruta M (2001) J Catal 201:221

    Article  Google Scholar 

  37. Daté M, Ichihashi Y, Yamashita T, Chiorino A, Boccuzzi F, Haruta M (2002) Catal Today 72:89

    Article  Google Scholar 

  38. Dobrosz-Gómez I, Kocemba I, Rynkowski JM (2009) Catal Lett 128:297

    Article  Google Scholar 

  39. Calla JT, Davis RJ (2005) J Phys Chem B 109:2307

    Article  CAS  Google Scholar 

  40. Calla JT, Davis RJ (2006) J Catal 241:407

    Article  CAS  Google Scholar 

  41. Sanchez-Castillo MA, Couto C, Kim WB, Dumesic JA (2004) Angew Chem Int Ed 43:1140

    Article  CAS  Google Scholar 

  42. Ojeda M, Zhan BZ, Iglesia E (2012) J Catal 285:92

    Article  CAS  Google Scholar 

  43. Calla JT, Davis RJ (2005) Catal Lett 99:21

    Article  CAS  Google Scholar 

  44. Calla JT, Davis RJ (2005) Ind Eng Chem Res 44:5403

    Article  CAS  Google Scholar 

  45. Bongiorno A, Landman U (2005) Phys Rev Lett 95:106102

    Article  Google Scholar 

  46. Liu LM, McAllister B, Ye HQ, Hu P (2006) J Am Chem Soc 128:4017

    Article  CAS  Google Scholar 

  47. Su HY, Yang MM, Bao XH, Li WX (2008) J Phys Chem C 112:17303

    Article  CAS  Google Scholar 

  48. Shang C, Liu ZP (2010) J Phys Chem C 114:16989

    Article  CAS  Google Scholar 

  49. Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129

    Article  Google Scholar 

  50. Gao F, Wood TE, Goodman DW (2010) Catal Lett 134:9

    Article  CAS  Google Scholar 

  51. Daniells ST, Makkee M, Moulijn JA (2005) Catal Lett 100:39

    Article  CAS  Google Scholar 

  52. Daniells ST, Overweg AR, Makkee M, Moulijn JA (2005) J Catal 230:52

    Article  CAS  Google Scholar 

  53. Zou XH, Qi SX, Suo ZH, An LD, Li F (2007) Catal Commun 8:784

    Article  CAS  Google Scholar 

  54. Daté M, Imai H, Tsubota S, Haruta M (2007) Catal Today 122:222

    Article  Google Scholar 

  55. Schubert MM, Venugopal A, Kahlich MJ, Plzak V, Behm RJ (2004) J Catal 222:32

    Article  CAS  Google Scholar 

  56. Diemant T, Bansmann J, Behm RJ (2010) Vacuum 84:193

    Article  Google Scholar 

  57. Haruta M, Ueda A, Tsubota S, Sanchez RMT (1996) Catal Today 29:443

    Article  CAS  Google Scholar 

  58. Cunningham DAH, Vogel W, Haruta M (1999) Catal Lett 63:43

    Article  CAS  Google Scholar 

  59. Bulushev DA, Kiwi-Minsker L, Yuranov I, Suvorova EI, Buffat PA, Renken A (2002) J Catal 210:149

    Article  CAS  Google Scholar 

  60. Debeila MA, Wells RPK, Anderson JA (2006) J Catal 239:162

    Article  CAS  Google Scholar 

  61. Moroz BL, Pyrjaev PA, Zaikovskii VI, Bukhtiyarov VI (2009) Catal Today 144:292

    Article  CAS  Google Scholar 

  62. Pyryaev PA, Moroz BL, Zyuzin DA, Nartova AV, Bukhtiyarov VI (2010) Kinet Catal 51:885

    Article  CAS  Google Scholar 

  63. Davran-Candan T, Tezcanlı ST, Yıldırım R (2011) Catal Commun 12:1149

    Article  CAS  Google Scholar 

  64. Nie X, Qian H, Ge Q, Xu H, Jin R (2012) ACS Nano 6:6014

    Article  CAS  Google Scholar 

  65. Delannoy L, Chantry RL, Casale S, Li ZY, Borensztein Y, Louis C (2013) Phys Chem Chem Phys 15:3473

    Article  CAS  Google Scholar 

  66. Kita H, Nakajima H, Hayashi K (1985) J Electroanal Chem 190:141

    Article  CAS  Google Scholar 

  67. Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74

    Article  CAS  Google Scholar 

  68. Tanaka K (2010) Catal Today 154:105

    Article  CAS  Google Scholar 

  69. Tanaka K (2013) Hyoumen Kagaku 34:358 in Japanese

    Article  CAS  Google Scholar 

  70. Oh SH, Hoflund GB (2007) J Catal 245:35

    Article  CAS  Google Scholar 

  71. Haruta M, Yoshizaki M, Cunningham DAH, Iwasaki T (1996) Ultraclean Technol 8:117 in Japanese

    Google Scholar 

  72. Yu Y, Takei T, Ohashi H, He H, Zhang X, Haruta M (2009) J Catal 267:121

    Article  CAS  Google Scholar 

  73. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458:746

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Fujitani or M. Haruta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujitani, T., Nakamura, I. & Haruta, M. Role of Water in CO Oxidation on Gold Catalysts. Catal Lett 144, 1475–1486 (2014). https://doi.org/10.1007/s10562-014-1325-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1325-2

Keywords

Navigation