Skip to main content
Log in

Effects of disorder and isotopic substitution in the specific heat and Raman scattering in LuB12

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Precision measurements of the specific heat and spectral intensity I(ω) of Raman scattering for LuNB12 single crystal samples with various boron isotopes (N = 10, 11, nat) have been performed at low and intermediate temperatures. A boson peak in the low-frequency part of the I(ω) spectrum has been observed for the first time for lutetium dodecaboride at liquid nitrogen temperatures. It has been shown that low-temperature anomalies in the specific heat, along with the features of Raman spectra, can be interpreted in terms of the transition to a cageglass state at T* = 50−70 K, which appears when Lu3+ ions are displaced from the centrosymmetric position in cavities of a rigid covalent boron sublattice towards the randomly located boron vacancies. The concentrations of various two-level systems that correspond to two types of vibrational clusters with correlation lengths of 12–15 and 18–22 Å, respectively, have been estimated. The vibrational density of states of LuB12 has been calculated from Raman spectra in the model of soft atomic potentials. An approach has been proposed to explain the dielectrization of the properties of the YbB12 compound at T < T*, as well as the features of the formation of magnetic structures in RB12 antiferromagnets (R = Tb, Dy, Ho, Er, Tm) and the suppression of superconductivity in LuB12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gmelin Handbook of Inorganic Chemistry, Vol. C11a, System 39: Compounds with Boron, Ed. by H. Bergman (Springer, Berlin, 1990).

    Google Scholar 

  2. V. I. Matkovich and J. Economy, in Boron and Refractory Borides, Ed. by V. I. Matkovich (Springer, New York, 1977), p. 78.

    Chapter  Google Scholar 

  3. A. Bouvet, T. Kasuya, M. Bonnet, L. P. Regnault, J. Rossat-Mignod, F. Iga, B. Fåk, and A. Severing, J. Phys.: Condens. Matter 10, 5667 (1998).

    Article  ADS  Google Scholar 

  4. A. V. Rybina, K. S. Nemkovski, V. B. Filipov, and A. V. Dukhnenko, Phys. Solid State 52(5), 894 (2010).

    Article  ADS  Google Scholar 

  5. A. V. Rybina, P. A. Alekseev, J. M. Mignot, E. V. Nefeodova, K. S. Nemkovski, R. I. Bewley, N. Yu. Shitsevalova, Yu. B. Paderno, F. Iga, and T. Takabatake, J. Phys.: Conf. Ser. 92, 012074 (2007).

    Article  ADS  Google Scholar 

  6. A. V. Rybina, K. S. Nemkovski, P. A. Alekseev, J.-M. Mignot, E. S. Clementyev, M. Johnson, L. Capogna, A. V. Dukhnenko, A. B. Lyashenko, and V. B. Filippov, Phys. Rev. B: Condens. Matter 82, 024302 (2010).

    Article  ADS  Google Scholar 

  7. A. Czopnik, N. Shitsevalova, V. Pluzhnikov, A. Krivchikov, Yu. Paderno, and Y. Onuki, J. Phys.: Condens. Matter 17, 5971 (2005).

    Article  ADS  Google Scholar 

  8. A. Czopnik, N. Shitsevalova, A. Krivchikov, V. Pluzhnikov, Y. Paderno, and Y. Onuki, J. Solid State Chem. 177, 507 (2004).

    Article  ADS  Google Scholar 

  9. H. Werheit, Yu. Paderno, V. Filippov, V. Paderno, A. Pietraszko, M. Armbrüster, and U. Schwarz, J. Solid State Chem. 179, 2761 (2006).

    Article  ADS  Google Scholar 

  10. A. Pietraszko, private communication (2005).

  11. T. S. Altshuler, Yu. V. Goryunov, M. S. Bresler, F. Iga, and T. Takabatake, Phys. Rev. B: Condens. Matter 68, 014425 (2003).

    Article  ADS  Google Scholar 

  12. R. Schmechel and H. Werheit, J. Phys.: Condens. Matter 11, 6803 (1999).

    Article  ADS  Google Scholar 

  13. R. Schmechel and H. Werheit, J. Solid State Chem. 154, 61 (2000).

    Article  ADS  Google Scholar 

  14. S. Gabáni, I. Bat’ko, K. Flachbart, T. Herrmannsdörfer, R. König, Y. Paderno, and N. Shitsevalova, J. Magn. Magn. Mater. 207, 131 (1999).

    Article  ADS  Google Scholar 

  15. N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, N. A. Samarin, D. N. Sluchanko, A. V. Dukhnenko, and A. V. Levchenko, JETP 108(4), 668 (2009).

    Article  ADS  Google Scholar 

  16. F. Iga, N. Shimizu, and T. Takabatake, J. Magn. Magn. Mater. 177–181, 337 (1998).

    Article  Google Scholar 

  17. T. S. Altshuler, A. E. Altshuler, and M. S. Bresler, JETP 93(1), 111 (2001).

    Article  ADS  Google Scholar 

  18. B. P. Gorshunov, P. Haas, O. Ushakov, M. Dressel, and F. Iga, Phys. Rev. B: Condens. Matter 73, 045207 (2006).

    Article  ADS  Google Scholar 

  19. R. Lortz, Y. Wang, S. Abe, C. Meingast, Yu. B. Paderno, V. Filippov, and A. Junod, Phys. Rev. B: Condens. Matter 72, 024547 (2005).

    Article  ADS  Google Scholar 

  20. V. A. Gasparov, N. S. Sidorov, and I. I. Zver’kova, Phys. Rev. B: Condens. Matter 73, 094510 (2006).

    Article  ADS  Google Scholar 

  21. J. Teyssier, A. B. Kuzmenko, D. van der Marel, F. Marsiglio, A. B. Liashchenko, N. Shitsevalova, and V. Filippov, Phys. Rev. B: Condens. Matter 75, 134503 (2007).

    Article  ADS  Google Scholar 

  22. V. Glushkov, M. Ignatov, S. Demishev, V. Filippov, K. Flachbart, T. Ishchenko, A. Kuznetsov, N. Samarin, N. Shitsevalova, and N. Sluchanko, Phys. Status Solidi B 243, R72 (2006).

    Article  ADS  Google Scholar 

  23. K. Flachbart, S. Gabáni, K. Gloos, M. Meissner, M. Opel, Y. Paderno, V. Pavlík, P. Samuely, E. Schuberth, N. Shitsevalova, K. Siemensmeyer, and P. Szabó, J. Low Temp. Phys. 140, 339 (2005).

    Article  ADS  Google Scholar 

  24. J. Teyssier, R. Lortz, A. Petrovic, D. van der Marel, V. Filippov, and N. Shitsevalova, Phys. Rev. B: Condens. Matter 78, 134504 (2008).

    Article  ADS  Google Scholar 

  25. A. A. Maksimov, I. I. Tartakovskii, and V. B. Timofeev, JETP Lett. 50(1), 51 (1989).

    ADS  Google Scholar 

  26. Yu. Paderno, V. Filippov, and N. Shitsevalova, AIP Conf. Proc. 230, 460 (1991).

    Article  ADS  Google Scholar 

  27. N. E. Sluchanko, A. N. Azarevich, A. V. Bogach, V. V. Glushkov, S. V. Demishev, A. V. Kuznetsov, K. S. Lyubshov, V. B. Filippov, and N. Yu. Shitsevalova, JETP 111(2), 279 (2010).

    Article  ADS  Google Scholar 

  28. H. Harima, A. Yanase, and T. Kasuya, J. Magn. Magn. Mater. 47–48, 567 (1985).

    Article  Google Scholar 

  29. A. Junod, T. Jarlborg, and J. Müller, Phys. Rev. B: Condens. Matter 27, 1568 (1983).

    Article  ADS  Google Scholar 

  30. K. Flachbart, P. Samuely, P. Szabó, K. Gloos, Y. Paderno, and N. Shitsevalova, Czech. J. Phys. 52(Suppl. 1), A221 (2002).

    Article  Google Scholar 

  31. M. I. Klinger, Sov. Phys.—Usp. 30(8), 699 (1987).

    Article  ADS  Google Scholar 

  32. D. A. Parshin, Phys. Solid State 36(7), 991 (1994).

    ADS  Google Scholar 

  33. D. A. Parshin, H. R. Schober, and V. L. Gurevich, Phys. Rev. B: Condens. Matter 76, 064206 (2007).

    Article  ADS  Google Scholar 

  34. Z. Fojud, P. Herzig, O. J. Zogal, A. Pietraszko, A. Dukhnenko, S. Jurga, and N. Shitsevalova, Phys. Rev. B: Condens. Matter 75, 184102 (2007).

    Article  ADS  Google Scholar 

  35. A. V. Kuznetsov, private communication (2010).

  36. N. Sluchanko, L. Bogomolov, V. Glushkov, S. Demishev, M. Ignatov, Eu. Khayrullin, N. Samarin, D. Sluchanko, A. Levchenko, N. Shitsevalova, and K. Flachbart, Phys. Status Solidi B 243, R63 (2006).

    Article  ADS  Google Scholar 

  37. Y. Fujita, N. Ogita, N. Shimizu, F. Iga, T. Takabatake, and M. Udagawa, J. Phys. Soc. Jpn. 68, 4051 (1999).

    Article  ADS  Google Scholar 

  38. R. C. Zeller and R. O. Pohl, Phys. Rev. B: Solid State 4, 2029 (1971).

    Article  ADS  Google Scholar 

  39. H. von Lohneysen, H. Rusing, and W. Sander, Z. Phys. B: Condens. Matter 60, 323 (1985).

    Article  ADS  Google Scholar 

  40. U. Buchenau, M. Prager, N. Nücker, A. J. Dianoux, N. Ahmad, and W. A. Phillips, Phys. Rev. B: Condens. Matter 34, 5665 (1986).

    Article  ADS  Google Scholar 

  41. A. P. Sokolov, A. Kisliuk, M. Soltwisch, and D. Quitmann, Phys. Rev. Lett. 69, 1540 (1992).

    Article  ADS  Google Scholar 

  42. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B: Condens. Matter 67, 094203 (2003).

    Article  ADS  Google Scholar 

  43. V. K. Malinovsky and A. P. Sokolov, Solid State Commun. 57, 757 (1986).

    Article  ADS  Google Scholar 

  44. E. Daval, A. Boukenter, and B. Champagnon, Phys. Rev. Lett. 56, 2052 (1986).

    Article  ADS  Google Scholar 

  45. V. K. Malinovsky, V. N. Novikov, A. P. Sokolov, and V. Dodonov, Solid State Commun. 65, 681 (1988).

    Article  Google Scholar 

  46. G. E. Grechnev, A. E. Baranovskiy, V. D. Fil, T. V. Ignatova, I. G. Kolobov, A. V. Logosha, N. Yu. Shitsevalova, V. B. Filippov, and O. Eriksson, Low Temp. Phys. 34(11), 921 (2008).

    Article  ADS  Google Scholar 

  47. K. S. Nemkovski, P. A. Alekseev, J.-M. Mignot, A. V. Rybina, F. Iga, T. Takabatake, N. Yu. Shitsevalova, Yu. B. Paderno, V. N. Lazukov, E. V. Nefeodova, N. N. Tiden, and I. P. Sadikov, J. Solid State Chem. 179, 2895 (2006).

    Article  ADS  Google Scholar 

  48. A. M. Kosevich, The Crystal Lattice: Phonons, Solitons, and Dislocations (Wiley, Berlin, 1999).

    Book  Google Scholar 

  49. G. M. Kalvius, D. R. Noakes, N. Marcano, R. Wäppling, F. Iga, and T. Takabatake, Physica B (Amsterdam) 326, 398 (2003).

    Article  ADS  Google Scholar 

  50. G. M. Kalvius, D. R. Noakes, N. Marcano, R. Wäppling, A. Kratzer, E. Schreier, F. Iga, T. Takabatake, and H. V. Löhneysen, Physica B (Amsterdam) 312–313, 210 (2002).

    Google Scholar 

  51. F. Iga, M. Kasaya, and T. Kasuya, J. Magn. Magn. Mater. 76–77, 156 (1988).

    Article  Google Scholar 

  52. M. Kasaya, F. Iga, M. Takigawa, and T. Kasuya, J. Magn. Magn. Mater. 47–48, 429 (1985).

    Article  Google Scholar 

  53. K. S. Nemkovski, J.-M. Mignot, P. A. Alekseev, A. S. Ivanov, E. V. Nefeodova, A. V. Rybina, L.-P. Regnault, F. Iga, and T. Takabatake, Phys. Rev. Lett. 99, 137204 (2007).

    Article  ADS  Google Scholar 

  54. H. Okamura, S. Kimura, H. Shinozaki, T. Nanba, F. Iga, N. Shimizu, and T. Takabatake, Phys. Rev. B: Condens. Matter 58, R7496 (1998).

    Article  ADS  Google Scholar 

  55. B. P. Gorshunov, A. S. Prokhorov, I. E. Spektor, A. A. Volkov, M. Dressel, and F. Iga, JETP 103(6), 897 (2006).

    Article  ADS  Google Scholar 

  56. Y. Takeda, M. Arita, M. Higashiguchi, K. Shimada, H. Namatame, M. Taniguchi, F. Iga, and T. Takabatake, Phys. Rev. B: Condens. Matter 73, 033202 (2006).

    Article  ADS  Google Scholar 

  57. G. Aeppli and Z. Fisk, Comments Condens. Matter Phys. 16, 155 (1992).

    Google Scholar 

  58. P. S. Riseborough, Adv. Phys. 49, 257 (2000).

    Article  ADS  Google Scholar 

  59. P. S. Riseborough, Phys. Rev. B: Condens. Matter 68, 235213 (2003).

    Article  ADS  Google Scholar 

  60. A. Akbari, P. Thalmeier, and P. Fulde, Phys. Rev. Lett. 102, 106402 (2009).

    Article  ADS  Google Scholar 

  61. A. F. Barabanov and L. A. Maksimov, Phys. Lett. A 373, 1787 (2009).

    Article  ADS  Google Scholar 

  62. A. F. Barabanov and L. A. Maksimov, JETP 111(2), 251 (2010).

    Article  ADS  Google Scholar 

  63. A. Kohout, I. Bat’ko, A. Czopnik, K. Flachbart, S. Matas, M. Meissner, Y. Paderno, N. Shitsevalova, and K. Siemensmeyer, Phys. Rev. B: Condens. Matter 70, 224416 (2004).

    Article  ADS  Google Scholar 

  64. K. Siemensmeyer, K. Habicht, Th. Lonkai, S. Mat’aš, S. Gabáni, N. Shitsevalova, E. Wulf, and K. Flachbart, J. Low Temp. Phys. 146, 581 (2007).

    Article  ADS  Google Scholar 

  65. N. E. Sluchanko, A. V. Bogach, V. V. Glushkov, S. V. Demishev, S. Yu. Gavrilkin, N. Yu. Shitsevalova, V. B. Filipov, S. Gabani, and K. Flachbart, JETP Lett. 91(2), 75 (2010).

    Article  ADS  Google Scholar 

  66. N. E. Sluchanko, A. N. Azarevich, A. V. Bogach, V. V. Glushkov, S. V. Demishev, S. Yu. Gavrilkin, N. Yu. Shitsevalova, V. B. Fillipov, S. Gabani, and K. Flachbart, Acta Phys. Pol., A 118, 929 (2010).

    Google Scholar 

  67. A. Bogach, L. Bogomolov, V. Glushkov, S. Demishev, D. Sluchanko, N. Sluchanko, N. Shitsevalova, A. Levchenko, V. Filipov, K. Flachbart, and K. Siemensmeyer, Acta Phys. Pol., A 113, 271 (2008).

    ADS  Google Scholar 

  68. K. Flachbart, E. Bauer, S. Gabáni, H. Kaldarar, T. Lonkai, S. Mat’aš, V. Pavlík, P. Priputen, N. Shitsevalova, K. Siemensmeyer, and N. Sluchanko, J. Magn. Magn. Mater. 310, 1727 (2007).

    Article  ADS  Google Scholar 

  69. K. Siemensmeyer, K. Flachbart, S. Gabáni, S. Mat’aš, Y. Paderno, and N. Shitsevalova, J. Solid State Chem. 179, 2748 (2006).

    Article  ADS  Google Scholar 

  70. N. E. Sluchanko, D. N. Sluchanko, V. V. Glushkov, S. V. Demishev, N. A. Samarin, and N. Yu. Shitsevalova, JETP Lett. 86(9), 604 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Sluchanko.

Additional information

Original Russian Text © N.E. Sluchanko, A.N. Azarevich, A.V. Bogach, I.I. Vlasov, V.V. Glushkov, S.V. Demishev, A.A. Maksimov, I.I. Tartakovskii, E.V. Filatov, K. Flachbart, S. Gabani, V.B. Filippov, N.Yu. Shitsevalova, V.V. Moshchalkov, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 3, pp. 536–552.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sluchanko, N.E., Azarevich, A.N., Bogach, A.V. et al. Effects of disorder and isotopic substitution in the specific heat and Raman scattering in LuB12 . J. Exp. Theor. Phys. 113, 468–482 (2011). https://doi.org/10.1134/S1063776111080103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111080103

Keywords

Navigation