Skip to main content
Log in

Spectral properties of waves in superlattices with 2D and 3D inhomogeneities

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamic susceptibility and one-dimensional density of states in an initially sinusoidal superlattice containing simultaneously 2D phase inhomogeneities simulating correlated rough-nesses of superlattice interfaces and 3D amplitude inhomogeneities of the superlattice layer materials. The analytic expression for the averaged Green’s function of the sinusoidal superlattice with two phase inhomogeneities is derived in the Bourret approximation. It is shown that the effect of increasing asymmetry in the peak heights of dynamic susceptibility at the Brillouin zone boundary of the superlattice, which was discovered earlier [15] upon an increase in root-mean-square (rms) fluctuations, also takes place upon an increase in the correlation wavenumber of inhomogeneities. However, the peaks in this case also become closer, and the width and depth of the gap in the density of states decrease thereby. It is shown that the enhancement of rms fluctuations of 3D amplitude inhomogeneities in a superlattice containing 2D phase inhomogeneities suppresses the effect of dynamic susceptibility asymmetry and leads to a slight broadening of the gap in the density of states and a decrease in its depth. Targeted experiments aimed at detecting the effects studied here would facilitate the development of radio-spectroscopic and optical methods for identifying the presence of inhomogeneities of various dimensions in multilayer magnetic and optical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nishiguchi, S. Tamura, and F. Nori, Phys. Rev. B: Condens. Matter 48, 2515 (1993).

    Article  ADS  Google Scholar 

  2. T. Gruner and D.-G. Welsch, Phys. Rev. A: At., Mol., Opt. Phys. 54, 1661 (1996).

    Article  ADS  Google Scholar 

  3. Yunxia Dong and Xiangdong Zhang, Opt. Express 16, 16950 (2008).

    Article  ADS  Google Scholar 

  4. V. A. Ignatchenko and Yu. I. Mankov, Phys. Rev. B: Condens. Matter 56, 194 (1997).

    Article  ADS  Google Scholar 

  5. A. N. Malakhov, Sov. Phys. JETP 3, 701 (1956).

    Google Scholar 

  6. S. M. Rytov, Introduction to the Statistical Radiophysics (Nauka, Moscow, 1976), Part 1 [in Russian].

    Google Scholar 

  7. V. A. Ignatchenko, Yu. I. Mankov, and A. A. Maradudin, J. Phys.: Condens. Matter 11, 2773 (1999).

    Article  ADS  Google Scholar 

  8. V. A. Ignatchenko, Yu. I. Mankov, and A. A. Maradudin, Phys. Rev. B: Condens. Matter 68, 024209 (2003).

    Article  ADS  Google Scholar 

  9. V. A. Ignatchenko and Yu. I. Mankov, Phys. Rev. B: Condens. Matter 75, 235422 (2007).

    Article  ADS  Google Scholar 

  10. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B: Condens. Matter 38, 2297 (1988).

    Article  ADS  Google Scholar 

  11. R. L. Headrick and J.-M. Baribeau, Phys. Rev. B: Condens. Matter 48, 9174 (1993).

    Article  ADS  Google Scholar 

  12. V. Hol and T. Baumbach, Phys. Rev. B: Condens. Matter 49, 10668 (1994).

    Article  ADS  Google Scholar 

  13. E. A. Kondrashkina, S. A. Stepanov, R. Opitz, M. Schmidbauer, R. Köhler, R. Hey, M. Wassermeier, and D. V. Novikov Phys. Rev. B: Condens. Matter 56, 10469 (1997).

    Article  ADS  Google Scholar 

  14. V. Hol, J. Mater. Sci.: Mater. Electron. 10, 223 (1999).

    Article  Google Scholar 

  15. V. A. Ignatchenko, Yu. I. Mankov, and D. S. Tsikalov, JETP 107(4), 603 (2008).

    Article  ADS  Google Scholar 

  16. Yu. I. Mankov and D. S. Tsikalov, Phys. Solid State 52(3), 544 (2010).

    Article  ADS  Google Scholar 

  17. R. C. Bourret, Nuovo Cimento 26, 1 (1962); Can. J. Phys. 40, 782 (1962).

    MathSciNet  MATH  Google Scholar 

  18. V. A. Ignatchenko, A. A. Maradudin, and A. V. Pozdnaykov, Phys. Met. Metallogr. 91(Suppl. 1), S69 (2001).

    Google Scholar 

  19. V. A. Ignatchenko and R. S. Iskhakov, Sov. Phys. JETP 45(3), 526 (1977).

    ADS  Google Scholar 

  20. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986).

    Google Scholar 

  21. E. Jahnke, F. Emde, and F. Lösch, Tafeln höherer Funktionen (Teubner, Stuttgart, Germany, 1960; Nauka, Moscow, 1964) [in German and in Russian].

    MATH  Google Scholar 

  22. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 2: Special Functions (Nauka, Moscow, 1983; Gordon and Breach, New York, 1990).

    Google Scholar 

  23. V. A. Ignatchenko, Yu. I. Man’kov, and A. V. Pozdnyakov, JETP 89(4), 717 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ignatchenko.

Additional information

Original Russian Text © V.A. Ignatchenko, D.S. Tsikalov, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 2, pp. 268–281.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatchenko, V.A., Tsikalov, D.S. Spectral properties of waves in superlattices with 2D and 3D inhomogeneities. J. Exp. Theor. Phys. 113, 232–244 (2011). https://doi.org/10.1134/S1063776111080061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111080061

Keywords

Navigation