Skip to main content
Log in

Two-photon absorption of high-power picosecond pulses in PbWO4, ZnWO4, PbMoO4, and CaMoO4 crystals

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nonlinear process of two-photon interband absorption is studied in tungstate and molybdate oxide crystals excited by a sequence of high-power picosecond pulses with a wavelength of 523.5 nm. The transmission of the crystals is measured for the excitation pulse intensity up to 100 GW/cm2. The pulse intensity in the crystals initially transparent at a wavelength of 523.5 nm is strongly limited due to two-photon absorption (TPA), and the reciprocal transmission in PbWO4 and ZnWO4 crystals reaches 50–60. In all crystals, TPA induces long-lived one-photon absorption, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the laser excitation intensity. Absorption dichroism manifests itself in a significant difference in the transmission intensities when the principal orthogonal optical axes of the crystals are excited. The TPA coefficients are determined during the excitation of two optical axes of the crystals. TPA coefficients β for the crystals vary over a wide range, namely, from β = 2.4 cm/GW for PbMoO4 to β = 0.14 cm/GW for CaMoO4, and the values of β can differ almost threefold when different optical axes of a crystal are excited. Good agreement is achieved between the measured intensities limited by TPA and the estimates calculated from the measured nonlinear coefficients. Stimulated Raman scattering (SRS) upon excitation at a wavelength of 523.5 nm is only detected in two of the four crystals under study. The experimental results make it possible to explain the suppression of SRS by its competition with TPA, and the measured nonlinear coefficients are used to estimate this suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. T. Basiev, Phys.—Usp. 42(10), 1051 (1999).

    Article  ADS  Google Scholar 

  2. E. Feldbach, L. Jönsson, M. Kirm, A. Kotlov, A. Lushchik, V. Nagirnyi, G. Svensson, and M. Åsberg-Dahlborg, J. Lumin. 87–89, 1213 (2000).

    Article  Google Scholar 

  3. J. A. Groenik and G. Blasse, Solid State Chem. 32, 9 (1980).

    Article  ADS  Google Scholar 

  4. V. V. Arsen’ev, V. S. Dneprovskii, D. N. Klyshko, and A. N. Penin, Sov. Phys. JETP 29(3), 413 (1969).

    ADS  Google Scholar 

  5. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, Appl. Phys. A: Mater. Sci. Process. 77, 229 (2003).

    ADS  Google Scholar 

  6. V. B. Mikhailik, H. Kraus, D. Wahl, M. Itoh, M. Koike, and I. K. Bailiff, Phys. Rev. B: Condens. Matter 69, 205110 (2004).

    Article  ADS  Google Scholar 

  7. V. I. Lukanin, D. S. Chunaev, and A. Ya. Karasik, JETP Lett. 91(11), 548 (2010).

    Article  ADS  Google Scholar 

  8. I. V. Ermakov, T. T. Basiev, K. K. Pukhov, and W. Gellermann, Phys. Solid State 42(3), 473 (2000).

    Article  ADS  Google Scholar 

  9. I. V. Ermakov, W. Gellermann, K. K. Pukhov, and T. T. Basiev, J. Lumin. 91, 19 (2000).

    Article  Google Scholar 

  10. T. T. Basiev, V. V. Voronov, M. Yu. Glotova, A. G. Papashvili, and A. Ya. Karasik, Quantum Electronics 33, 684 (2003).

    Article  Google Scholar 

  11. S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  12. T. T. Basiev, P. G. Zverev, A. Ya. Karasik, V. V. Osiko, A. A. Sobol’, and D. S. Chunaev, JETP 99(5), 934 (2004).

    Article  ADS  Google Scholar 

  13. T. T. Basiev, A. A. Sobol, Yu. K. Voronko, and P. G. Zverev, Opt. Mater. (Amsterdam) 15, 205 (2000).

    Article  ADS  Google Scholar 

  14. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, Opt. Mater. (Amsterdam) 11(4), 307 (1999).

    Article  ADS  Google Scholar 

  15. T. T. Basiev, A. Ya. Karasik, A. A. Sobol’, D. S. Chunaev, and V. E. Shukshin, Quantum Electronics 41(4), 370 (2011).

    Article  ADS  Google Scholar 

  16. R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, and A. Segura, EPL 83, 37002 (2008).

    Article  ADS  Google Scholar 

  17. Y. Zhang, N. A. W. Holzwarth, and R. T. Williams, Phys. Rev. B: Condens. Matter 57, 12738 (1998).

    Article  ADS  Google Scholar 

  18. G. Blasse and W. J. Schipper, Phys. Status Solidi A 25, K163 (1974).

    Article  ADS  Google Scholar 

  19. D. S. Chunaev, T. T. Basiev, V. A. Konushkin, A. G. Papashvili, and A. Ya. Karasik, Laser Phys. Lett. 5, 589 (2008).

    Article  ADS  Google Scholar 

  20. I. V. Bezel’, Yu. A. Matveets, A. G. Stepanov, S. V. Chekalin, and A. P. Yartsev, JETP Lett. 59(6), 403 (1994).

    ADS  Google Scholar 

  21. D. S. Chunaev and A. Ya. Karasik, Laser Phys. 16, 1668 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Karasik.

Additional information

Original Russian Text © V.I. Lukanin, D.S. Chunaev, A.Ya. Karasik, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 3, pp. 472–483.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukanin, V.I., Chunaev, D.S. & Karasik, A.Y. Two-photon absorption of high-power picosecond pulses in PbWO4, ZnWO4, PbMoO4, and CaMoO4 crystals. J. Exp. Theor. Phys. 113, 412–421 (2011). https://doi.org/10.1134/S1063776111070077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111070077

Keywords

Navigation