Skip to main content
Log in

Simulation of thermal ionization in a dense helium plasma by the Feynman path integral method

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The region of equilibrium states is studied where the quantum nature of the electron component and a strong nonideality of a plasma play a key role. The problem of negative signs in the calculation of equilibrium averages a system of indistinguishable quantum particles with a spin is solved in the macroscopic limit. It is demonstrated that the calculation can be conducted up to a numerical result. The complete set of symmetrized basis wave functions is constructed based on the Young symmetry operators. The combinatorial weight coefficients of the states corresponding to different graphs of connected Feynman paths in multiparticle systems are calculated by the method of random walk over permutation classes. The kinetic energy is calculated using a viral estimator at a finite pressure in a statistical ensemble with flexible boundaries. Based on the methods developed in the paper, the computer simulation is performed for a dense helium plasma in the temperature range from 30000 to 40000 K. The equation of state, internal energy, ionization degree, and structural characteristic of the plasma are calculated in terms of spatial correlation functions. The parameters of a pseudopotential plasma model are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Grigoriev, T. V. Koval, V. R. Kukhta, P. Raharjo, and K. Uemura, Zh. Tekh. Fiz. 78(1), 104 (2008) [Tech. Phys. 53 (1), 99 (2008)].

    Google Scholar 

  2. D. S. Nazarov, G. E. Ozur, and D. I. Proskurovskii, Izv. Vyssh. Uchebn. Zaved., Fiz. 37(3), 100 (1994) [Russ. Phys. J. 37 (3), 283 (1994)].

    Google Scholar 

  3. M. Yu. Kreindel’, E. A. Litvinov, G. E. Ozur, and D. I. Proskurovskii, Fiz. Plazmy 17(12), 1425 (1991) [Sov. J. Plasma Phys. 17 (12), 825 (1991)].

    Google Scholar 

  4. G. V. Ivanenkov, Fiz. Plazmy 8(6), 1184 (1982) [Sov. J. Plasma Phys. 8 (6), 670 (1982)].

    Google Scholar 

  5. S. V. Shevkunov and V. B. Fedyushin, Available from VINITI, No. 2185-85 (1985).

  6. A. V. Karelin, A. A. Sinyanskii, and S. I. Yakovlenko, Kvantovaya Elektron. (Moscow) 24, 387 (1997).

    Google Scholar 

  7. A. M. Boichenko, A. V. Karelin, and S. I. Yakovlenko, Kvantovaya Elektron. (Moscow) 22, 547 (1995).

    Google Scholar 

  8. A. M. Boichenko, A. V. Karelin, and S. I. Yakovlenko, Laser Phys. 5, 80 (1995).

    Google Scholar 

  9. A. V. Karelin, Laser Phys. 4, 498 (1994).

    Google Scholar 

  10. R. J. De Young, Appl. Phys. Lett. 38, 297 (1981).

    Article  ADS  Google Scholar 

  11. V. A. Bushuev and R. N. Kuz’min, Usp. Fiz. Nauk 114(12), 678 (1974) [Sov. Phys.-Usp. 17 (6), 942 (1975)].

    Article  Google Scholar 

  12. A. M. Voinov, L. E. Dovbysh, V. N. Krivonosov, S. P. Mel’nikov, I. V. Podmoshenskii, and A. A. Sinyanskii, Pis’ma Zh. Tekh. Fiz. 7(8), 1016 (1981) [Sov. Tech. Phys. Lett. 7 (8), 437 (1981)].

    Google Scholar 

  13. A. M. Voinov, L. E. Dovbysh, V. N. Krivonosov, S. P. Mel’nikov, I. V. Podmoshenskii, and A. A. Sinyanskii, Zh. Tekh. Fiz. 52(7), 1346 (1982) [Sov. Phys. Tech. Phys. 27 (7), 819 (1982)].

    Google Scholar 

  14. J. Nilsen, Kvantovaya Elektron. (Moscow) 33, 1 (2003).

    Article  Google Scholar 

  15. E. N. Avrorin, V. A. Lykov, P. A. Loboda, and V. Yu. Politov, Laser Part. Beams 15, 3 (1997).

    Article  ADS  Google Scholar 

  16. A. M. Boichenko, E. K. Bonyushkin, A. V. Karelin, B. V. Lazhintsev, A. E. Lakhtikov, A. P. Morovov, and S. I. Yakovlenko, Kvantovaya Elektron. (Moscow) 23, 5 (1996).

    Google Scholar 

  17. J. Nilsen, Legacy of the X-ray Laser Program (Lawrence Livermore National Laboratory Report, No. UCRL-LR-114552, August 6, 1993); http://www.llnl.gov/tid/lof/documents/pdf/222506.pdf.

  18. J. Nilsen, Energy Technol. Rev., November, pp. 13–21 (1994); http://www.llnl.gov/etr/11.94.html or http://www.llnl.gov/etr/pdfs/19-94.2.pdf.

  19. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver, Phys. Rev. Lett. 54, 110 (1985).

    Article  ADS  Google Scholar 

  20. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965; Mir, Moscow, 1968).

    MATH  Google Scholar 

  21. V. M. Zamalin and G. E. Norman, Zh. Vychisl. Mat. Mat. Fiz. 13, 408 (1973).

    Google Scholar 

  22. V. S. Filinov, Teplofiz. Vys. Temp. 11, 871 (1973).

    Google Scholar 

  23. V. S. Filinov, Teplofiz. Vys. Temp. 13(2), 251 (1975) [High Temp. 13 (2), 234 (1975)].

    ADS  Google Scholar 

  24. V. S. Filinov, Teplofiz. Vys. Temp. 13(6), 1146 (1975) [High Temp. 13 (6), 1065 (1975)].

    Google Scholar 

  25. V. S. Filinov, Teplofiz. Vys. Temp. 14(2), 245 (1976) [High Temp. 14 (2), 225 (1976)].

    MathSciNet  ADS  Google Scholar 

  26. V. S. Filinov, Phys. Lett. A 54, 259 (1975).

    Article  ADS  Google Scholar 

  27. V. S. Filinov and G. E. Norman, Phys. Lett. A 55, 219 (1975).

    Article  ADS  Google Scholar 

  28. S. V. Shevkunov, P. N. Vorontsov-Vel’yaminov, and O. M. Roshchinenko, in Modern Problems of Statistical Physics, Ed. by I. R. Yukhnovskii (Naukova Dumka, Kiev, 1989), Vol. 1, p. 292 [in Russian].

    Google Scholar 

  29. S. V. Shevkunov, Teplofiz. Vys. Temp. 28(1), 1 (1990) [High Temp. 28 (1), 1 (1990)].

    ADS  Google Scholar 

  30. S. V. Shevkunov, in Modern Problems of Statistical Physics, Ed. by I. R. Yukhnovskii (Naukova Dumka, Kiev, 1989), Vol. 1, p. 379 [in Russian].

    Google Scholar 

  31. S. V. Shevkunov, Dokl. Akad. Nauk 369(1–3), 43 (1999) [Dokl. Phys. 44 (11), 730 (1999)].

    Google Scholar 

  32. S. V. Shevkunov, Available from VINITI, No. 6370-V87 (1987).

  33. S. V. Shevkunov, Zh. Eksp. Teor. Fiz. 118(1), 36 (2000) [JETP 91 (1), 31 (2000)].

    Google Scholar 

  34. S. V. Shevkunov, Dokl. Akad. Nauk 382(4–6), 615 (2002) [Dokl. Phys. 47 (2), 106 (2002)].

    MATH  Google Scholar 

  35. S. V. Shevkunov, Zh. Vychisl. Mat. Mat. Fiz. 43, 1825 (2003).

    MathSciNet  MATH  Google Scholar 

  36. S. V. Shevkunov, Mat. Model. 2, 3 (1990).

    MATH  Google Scholar 

  37. S. V. Shevkunov and P. N. Vorontsov-Velyaminov, Mol. Simul. 7, 249 (1991).

    Article  Google Scholar 

  38. S. V. Shevkunov and P. N. Vorontsov-Velyaminov, Mol. Simul. 7, 205 (1991).

    Article  Google Scholar 

  39. S. V. Shevkunov, Teplofiz. Vys. Temp. 29(1), 45 (1991) [High Temp. 29 (1), 44 (1991)].

    Google Scholar 

  40. S. V. Shevkunov, Zh. Eksp. Teor. Fiz. 121(5), 1098 (2002) [JETP 94 (5), 943 (2002)].

    Google Scholar 

  41. S. V. Shevkunov, Zh. Eksp. Teor. Fiz. 127(3), 696 (2005) [JETP 100 (3), 617 (2005)].

    Google Scholar 

  42. S. V. Shevkunov, Zh. Eksp. Teor. Fiz. 132(2), 453 (2007) [JETP 105 (2), 404 (2007)].

    Google Scholar 

  43. S. V. Shevkunov, Zh. Eksp. Teor. Fiz. 130(1), 105 (2006) [JETP 103 (1), 92 (2006)].

    Google Scholar 

  44. S. V. Shevkunov, Dokl. Akad. Nauk 409(1–3), 176 (2006) [Dokl. Phys. 51 (7), 344 (2006)].

    MATH  Google Scholar 

  45. V. M. Zamalin, G. E. Norman, and V. S. Filinov, The Monte Carlo Method in Statistical Thermodynamics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  46. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1950; Nauka, Moscow, 1983).

    Google Scholar 

  47. F. A. Berezin, The Method of Second Quantization (Academic, New York, 1966; Nauka, Moscow, 1986).

    MATH  Google Scholar 

  48. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Butterworth-Heinemann, Oxford, 1981).

    Google Scholar 

  49. T. L. Hill, Statistical Mechanics: Principles and Selected Applications (McGraw-Hill, New York, 1956).

    MATH  Google Scholar 

  50. T. L. Hill, Thermodynamics of Small Systems (McGraw-Hill, New York, 1963).

    MATH  Google Scholar 

  51. A. A. Radtsig and B. M. Smirnov, A Reference Book on Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 139, No. 4, pp. 769–797.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevkunov, S.V. Simulation of thermal ionization in a dense helium plasma by the Feynman path integral method. J. Exp. Theor. Phys. 112, 668–693 (2011). https://doi.org/10.1134/S106377611104011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611104011X

Keywords

Navigation