Skip to main content
Log in

Conductivity of composites containing ferromagnetic nanoparticles: The role of a magnetic field

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory of conductivity is developed for metal-containing nanocomposites. An expression is obtained for the tunneling rate of an electron between nanoparticles. Three regimes of current flow are possible: the cases of weak, strong, and superstrong electric fields. In the weak-field regime, the electrons generated as a result of ionization of neutral nanoparticles are characterized by a nearly equilibrium distribution. The conductivity in this regime is calculated with the use of this nearly equilibrium distribution of electrons and the relationship between the spacing of neighboring particles and their radii. An expression is obtained for the electric conductivity as a function of temperature and a magnetic field (for ferromagnets) with regard to the distribution of nanoparticles with respect to radius and their volume density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. M. Naber, S. Faez, and W. G. van der Wiel, J. Phys. D: Appl. Phys. 40, R205 (2007).

    Article  ADS  Google Scholar 

  2. J. Gitelman, Phys. Rev. B: Solid State 5, 3609 (1972).

    ADS  Google Scholar 

  3. J. S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976).

    Article  ADS  Google Scholar 

  4. H. Fujimori, S. Mitani, and S. Ohnuma, Mater. Sci. Eng., B 31, 219 (1995).

    Article  Google Scholar 

  5. S. Mitani, S. Takahashi, K. Takahashi, K. Yakushiji, S. Maekawa, and H. Fujimori, Phys. Rev. Lett. 81, 2799 (1998).

    Article  ADS  Google Scholar 

  6. L. I. Trakhtenberg, G. N. Gerasimov, and E. I. Grigor’ev, Zh. Fiz. Khim. 73(2), 264 (1999) [Russ. J. Phys. Chem. A 73 (2), 209 (1999)].

    Google Scholar 

  7. L. I. Trakhtenberg and G. N. Gerasimov, in Metal/Polymer Nanocomposites, Ed. by G. Carotenuto and L. Nicolais (John Wiley and Sons, New York, 2005), p. 37.

    Google Scholar 

  8. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).

    Article  ADS  Google Scholar 

  9. K. Yakushiji, S. Mitani, F. Ernult, K. Takanashi, and H. Fujimori, Phys. Rep. 451, 1 (2007).

    Article  ADS  Google Scholar 

  10. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (GIFML, Moscow, 1962; Pergamon, London, 1965).

    Google Scholar 

  11. E. L. Nagaev, Usp. Fiz. Nauk 162(9), 49 (1992) [Sov. Phys.-Usp. 35 (9), 747 (1992)].

    Article  Google Scholar 

  12. G. N. Gerasimov and L. I. Trakhtenberg, in Thin Films and Nanostructures: Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, Ed. by L. I. Trakhtenberg, S. H. Lin, and O. J. Illegbusi (Elsevier, Amsterdam, The Netherlands, 2007), Vol. 34, p. 523.

    Chapter  Google Scholar 

  13. I. P. Suzdalev, Usp. Khim. 8, 715 (2006).

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  15. L. I. Trakhtenberg, A. B. Rabinovich, V. A. Kaminskii, and G. N. Gerasimov, Zh. Khim. Fiz. 21, 69 (2002).

    Google Scholar 

  16. G. K. Ivanov and M. A. Kozhushner, Fiz. Tverd. Tela (Leningrad) 20(1), 9 (1978) [Sov. Phys. Solid State 20 (1), 9 (1978)].

    Google Scholar 

  17. M. A. Kozhushner, in Thin Films and Nanostructures: Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, Ed. by L. I. Trakhtenberg, S. H. Lin, and O. J. Illegbusi (Elsevier, Amsterdam, The Netherlands, 2007), Vol. 34, p. 37.

    Chapter  Google Scholar 

  18. D. I. Bolgov, M. A. Kozhushner, R. R. Muriasov, and V. S. Posvianskii, J. Chem. Phys. 119, 3871 (2003).

    Article  ADS  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatgiz, Moscow, 1963; Butterworth-Heinemann, Oxford, 1969).

    Google Scholar 

  20. R. Marcus, J. Phys. Chem. 24, 966, 979 (1956).

    Article  Google Scholar 

  21. A. M. Kuznetsov, Charge Transfer in Physics, Chemistry, and Biology (Gordon and Breach, New York, 1995).

    Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Fizmatlit, Moscow, 1995; Butterworth-Heinemann, Oxford, 2000).

    Google Scholar 

  23. V. Ambegaokar, B. I. Halperin, and J. S. Langer, Phys. Rev. B: Solid State 4, 2612 (1971)

    ADS  Google Scholar 

  24. B. I. Shklovskii and A. L. Efros, Zh. Eksp. Teor. Fiz. 60, 867 (1971) [Sov. Phys. JETP 33, 468 (1971)].

    Google Scholar 

  25. M. Pollak, J. Non-Cryst. Solids 11, 1 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kozhushner.

Additional information

Original Russian Text © M.A. Kozhushner, L.I. Trakhtenberg, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 6, pp. 1144–1152.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhushner, M.A., Trakhtenberg, L.I. Conductivity of composites containing ferromagnetic nanoparticles: The role of a magnetic field. J. Exp. Theor. Phys. 111, 1010–1018 (2010). https://doi.org/10.1134/S1063776110120149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110120149

Keywords

Navigation