Skip to main content
Log in

Simulation of the dielectric and conductive properties of metal-containing nanostructured composites

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The relationship between the empirical parameters of the Havriliak–Negami formula with the physical characteristics of metal nanostructured composites is discussed. The analysis is based on a non-phenomenological theory of the complex permittivity of these materials. It turns out that the absolute values and temperature dependence of the empirical parameters are largely dependent on the energy of the electrons in traps located around metal nanoparticles. While the frequency dependence of the permittivity near the maximum is closely described by the empirical formula, the interpretation of the temperature dependence encounters serious difficulties, with the empirical parameters having no physical sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wetchakun, T. Samerjai, N. Tamaekong, et al., Sens. Actuators B 160, 580 (2011).

    Article  CAS  Google Scholar 

  2. P. Moriarty, Rep. Progr. Phys. 64, 297 (2001).

    Article  CAS  Google Scholar 

  3. J. Jortner and C. N. R. Rao, Pure Appl. Chem. 74, 1491 (2002).

    Article  CAS  Google Scholar 

  4. G. Carotenuto and L. Nicolais, Metal/Polymer Nanocomposites (Wiley, New York, 2005).

    Google Scholar 

  5. L. I. Trakhtenberg, S. H. Lin, and O. J. Ilegbusi, Physical-Chemical Phenomena in Thin Films and at Solid Surfaces (Elsevier, Amsterdam, 2007).

    Google Scholar 

  6. A. V. Mamishev, A. R. Takahashi, Y. Du, B. C. Lesieutre, and M. Zahn, J. Electrost. 56, 465 (2002).

    Article  Google Scholar 

  7. K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).

    Article  CAS  Google Scholar 

  8. D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).

    Article  CAS  Google Scholar 

  9. S. Havriliak and S. Negami, J. Polym. Sci. C 14, 99 (1966).

    Article  Google Scholar 

  10. P. Debye, Polar Molecules (Dover, New York, 1929).

    Google Scholar 

  11. Yu. Feldman, A. Puzenko, and Ya. Ryabov, in Advanced in Chemical Physics, Ed. by W. T. Coffey and S. A. Rice (Wiley, New York, 2006), Vol. 133A, p. 1.

    Google Scholar 

  12. L. I. Trakhtenberg, M. A. Kozhushner, G. N. Gerasimov, et al., J. Non-Cryst. Solids 356, 642 (2010).

    Article  CAS  Google Scholar 

  13. M. A. Kozhushner and L. I. Trakhtenberg, in Broadband Dielectric Spectroscopy and Its Advanced Technological Applications (Springer, Berlin, 2013), p. 49.

    Book  Google Scholar 

  14. L. I. Trakhtenberg, E. Axelrod, G. N. Gerasimov, E. V. Nikolaeva, and E. I. Smirnova, J. Non-Cryst. Solids 305, 190 (2002).

    Article  CAS  Google Scholar 

  15. B. Macalik, M. Suszynska, and E. Rysiakiewicz-Pasek, Opt. Appl. 35, 761 (2005).

    CAS  Google Scholar 

  16. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, T. V. Belysheva, and O. J. Ilegbusi, Sens. Actuators B 169, 32 (2012).

    Article  CAS  Google Scholar 

  17. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, T. V. Belysheva, and O. J. Ilegbusi, Sens. Actuators B 187, 514 (2013).

    Article  CAS  Google Scholar 

  18. L. I. Trakhtenberg, G. N. Gerasimov, and E. I. Grigor’ev, Russ. J. Phys. Chem. A 73, 209 (1999).

    Google Scholar 

  19. L. I. Trakhtenberg, G. N. Gerasimov, L. N. Aleksandrova, and V. K. Potapov, Rad. Phys. Chem. 65, 479 (2002).

    Article  CAS  Google Scholar 

  20. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960).

    Google Scholar 

  21. G. Williams, in Dielectric Spectroscopy of Polymeric Materials, Ed. by J. P. Runt and J. J. Fitzgerald (Am. Chem. Soc, Washington, DC, 1997), p. 3.

  22. N. G. McCrum, B. E. Read, and G. Williams, Inelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991).

    Google Scholar 

  23. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  24. N. F. Mott and E. A. Davis, Electronic Processes in NonCrystalline Materials (Clarendon, Oxford, 1971).

    Google Scholar 

  25. H. Vogel, Phys. Z. 22, 645 (1921).

    CAS  Google Scholar 

  26. G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

    Article  CAS  Google Scholar 

  27. G. Tammann and W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926).

    Article  Google Scholar 

  28. R. Kohlrausch, Ann. Phys. Chem. (Poggendorff) 91, 56 (1854).

    Article  Google Scholar 

  29. G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970).

    Article  CAS  Google Scholar 

  30. A. I. Burshtein, V. L. Klochikhin, and L. I. Trakhtenberg, Khim. Fiz. 3 (2), 155 (1984).

    CAS  Google Scholar 

  31. S. F. Timashev and L. I. Trakhtenberg, Zh. Fiz. Khim. 67, 448 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kozhushner.

Additional information

Original Russian Text © M.A. Kozhushner, V.L. Bodneva, L.I. Trakhtenberg, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 9, pp. 74–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhushner, M.A., Bodneva, V.L. & Trakhtenberg, L.I. Simulation of the dielectric and conductive properties of metal-containing nanostructured composites. Russ. J. Phys. Chem. B 9, 748–753 (2015). https://doi.org/10.1134/S1990793115050085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115050085

Keywords

Navigation