Skip to main content
Log in

Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Lee, E. Ramirez-Ruiz, and D. Page, Astrophys. J. 632, 421 (2005).

    Article  ADS  Google Scholar 

  2. V. S. Beskin, Axisymmetric Steady Flows in Astrophysics (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  3. V. M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Berlin, 1992).

    Google Scholar 

  4. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  5. M. C. Begelman, R. D. Blandford, and M. J. Rees, Rev. Mod. Phys. 56, 255 (1984).

    Article  ADS  Google Scholar 

  6. B. Kozlovsky, R. J. Murphy, and G. H. Share, Astrophys. J. 604, 892 (2004).

    Article  ADS  Google Scholar 

  7. V. V. Zheleznyakov and S. A. Koryagin, Pis’ma Astron. Zh. 28(11), 809 (2002) [Astron. Lett. 28 (11), 727 (2002)].

    Google Scholar 

  8. V. V. Zheleznyakov and S. A. Koryagin, Pis’ma Astron. Zh. 31(11), 819 (2005) [Astron. Lett. 31 (11), 713 (2005)].

    Google Scholar 

  9. E. V. Derishev, V. V. Kocharovskiı, Vl. V. Kocharovskiı, and V. Yu. Mart’yanov, in Nonlinear Waves’2006 (Institute of Applied Physics, Russian Academy of Sciences, Nizhni Novgorod, Russia, 2007), p. 268 [in Russian].

    Google Scholar 

  10. Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics (Nauka, Moscow, 1967; University of Chicago Press, Chicago, 1971).

    Google Scholar 

  11. H. Alfven, Rev. Mod. Phys. 37, 652 (1965).

    Article  ADS  Google Scholar 

  12. H. Alfven, Cosmic Plasma (Reidel, Dordrecht, The Netherlands, 1981; Mir, Moscow, 1983).

    Google Scholar 

  13. A. E. Dubinov and M. A. Sazonkin, Fiz. Plazmy 35(1), 18 (2009) [Plasma Phys. Rep. 35 (1), 14 (2009)].

    Google Scholar 

  14. A. Mushtaq and S. A. Khan, Phys. Plasmas 14, 052307 (2007).

    Article  ADS  Google Scholar 

  15. S. Ali, W. M. Muslem, P. K. Shukla, and R. Schlickeiser, Phys. Plasmas 14, 082307 (2007).

    Article  ADS  Google Scholar 

  16. W. Masood, A. M. Mirza, and M. Hanif, Phys. Plasmas 15, 072106 (2008).

    Article  ADS  Google Scholar 

  17. S. A. Khan and Q. Haque, Chin. Phys. Lett. 25, 4329 (2008).

    Article  ADS  Google Scholar 

  18. S. A. Khan, S. Mahmood, and A. M. Mirza, Chin. Phys. Lett. 26, 045203 (2009).

    Article  ADS  Google Scholar 

  19. A. Mushtaq and S. A. Khan, Phys. Scr. 78, 015501 (2008).

    Article  ADS  Google Scholar 

  20. H. Ren, Z. Wu, J. Cao, and P. K. Chu, J. Phys. A.: Math. Gen. 41, 115501 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Sabry, W. M. Muslem, F. Haas, S. Ali, and P. K. Shukla, Phys. Plasmas 15, 122308 (2008).

    Article  ADS  Google Scholar 

  22. W. Masood, A. M. Mirza, Sh. Nargis, and M. Ayub, Phys. Plasmas 16, 042308 (2009).

    Article  ADS  Google Scholar 

  23. N. Jehan, M. Salahuddin, S. Mahmood, and A. M. Mirza, Phys. Plasmas 16, 042313 (2009).

    Article  ADS  Google Scholar 

  24. A. P. Misra, C. Bhowmik, and P. K. Shukla, Phys. Plasmas 16, 072116 (2009).

    Article  ADS  Google Scholar 

  25. W. Masood, S. Karim, H. A. Shah, and M. Siddiq, Phys. Plasmas 16, 112302 (2009).

    Article  ADS  Google Scholar 

  26. P. Chatterjee, K. Roy, G. Mondal, S. V. Muniandy, S. L. Yap, and C. S. Wong, Phys. Plasmas 16, 122112 (2009).

    Article  ADS  Google Scholar 

  27. R. Sabry, W. M. Moslem, and P. K. Shukla, Eur. Phys. J. D 51, 233 (2009).

    Article  ADS  Google Scholar 

  28. E. F. El-Shamy, W. M. Moslem, and P. K. Shukla, Phys. Lett. A 374, 290 (2009).

    Article  ADS  Google Scholar 

  29. S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, and P. K. Shukla, Phys. Lett. A 374, 960 (2010).

    Article  ADS  Google Scholar 

  30. M. V. Kuzelev and A. A. Rukhadze, Usp. Fiz. Nauk 169(6), 687 (1999) [Phys.—Usp. 42 (6), 603 (1999)].

    Article  Google Scholar 

  31. A. L. Sanin, Quantum Hydrodynamics (Nestor, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  32. G. Manfredi and F. Haas, Phys. Rev. B: Condens. Matter 64, 075316 (2001).

    Article  ADS  Google Scholar 

  33. P. K. Shukla and B. Eliasson, Usp. Fiz. Nauk 180(1), 55 (2010) [Phys.—Usp. 53 (1), 51 (2010)].

    Article  Google Scholar 

  34. A. E. Dubinov, Prikl. Mekh. Tekh. Fiz. 48, 3 (2007).

    Google Scholar 

  35. A. E. Dubinov and A. A. Dubinova, Fiz. Plazmy 33(10), 935 (2007) [Plasma Phys. Rep. 33 (10), 859 (2007)].

    Google Scholar 

  36. A. E. Dubinov, Fiz. Plazmy 33(3), 239 (2007) [Plasma Phys. Rep. 33 (3), 210 (2007)].

    Google Scholar 

  37. A. E. Dubinov and M. A. Sazonkin, Zh. Tekh. Fiz. 78(9), 29 (2008) [Tech. Phys. 53 (9), 1129 (2008)].

    Google Scholar 

  38. B. M. Mladek, G. Kahl, and M. Neumann, J. Chem. Phys. 124, 064503 (2006).

    Article  ADS  Google Scholar 

  39. A. E. Dubinov and A. A. Dubinova, Fiz. Plazmy 34(5), 442 (2008) [Plasma Phys. Rep. 34 (5), 403 (2008)].

    Google Scholar 

  40. F. Haas and M. Lazar, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 046404 (2008).

    Article  ADS  Google Scholar 

  41. B. Eliasson and P. K. Shukla, Phys. Scr. 78, 025503 (2008).

    Article  ADS  Google Scholar 

  42. A. E. Dubinov, A. A. Dubinova, and M. A. Sazonkin, Radiotekh. Élektron. (Moscow) 55, 968 (2010) [J. Commun. Technol. Electron. 55, 907 (2010)].

    Google Scholar 

  43. G. N. Pykhteev and I. N. Meleshko, Polylogarithms, Their Properties, and Methods of Computation (Belarussian State University, Minsk, 1976) [in Russian].

    Google Scholar 

  44. L. Lewin, Polylogarithms and Associated Functions (North Holland, New York, 1981).

    MATH  Google Scholar 

  45. A. A. Dubinova, Zh. Tekh. Fiz. 79(2), 48 (2009) [Tech. Phys. 54 Belarus (2), 210 (2009)].

    Google Scholar 

  46. V. F. Zaitsev and A. D. Polyanin, Handbook of Exact Solutions for Ordinary Differential Equations (Fizmatlit, Moscow, 2001; Chapman and Hall, Boca Raton, FL, United States, 2003).

    Google Scholar 

  47. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Yad. Sint. 1, 82 (1961).

    Google Scholar 

  48. R. Z. Sagdeev, Vopr. Teor. Plazmy, No. 4, 20 (1964).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Additional information

Original Russian Text © A.E. Dubinov, M.A. Sazonkin, 2010, published in Zhurnal Éksperimental’noı i Teoreticheskoı Fiziki, 2010, Vol. 138, No. 5, pp. 979–990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinov, A.E., Sazonkin, M.A. Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma. J. Exp. Theor. Phys. 111, 865–876 (2010). https://doi.org/10.1134/S1063776110110178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110178

Keywords

Navigation