Skip to main content
Log in

Ion-Acoustic Solitons in Magnetized Plasma Under Weak Relativistic Effects on the Electrons

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Investigating ion-acoustic disturbances in a magnetized plasma, consisting of relativistic electrons and non-thermal ions, entails a comprehensive study into the nonlinear wave structure. By condensing the fundamental set of fluid equations for the flow variables, a singular equation known as the Sagdeev potential equation is derived using the pseudopotential approach. In this investigation of the magnetized relativistic plasma, we have observed only dip (rarefactive) \(\left( {N < 1} \right)\) soliton under both subsonic \(\left( {M < 1} \right)\) and supersonic \(\left( {M > 1} \right)\) conditions. The occurrence of the soliton depends on the wave velocities in different propagation directions. The magnitude of amplitudes of the relativistic solitons is higher for higher Mach number \(\left( {M > 1} \right)\) irrespective of the wave’s propagation direction. Furthermore, the magnitude of amplitudes of the solitary wave is seen to increase near the direction of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Inquiries about data availability should be directed to the authors.

References

  1. Korteweg, D.J., de Vries, G.: XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. 39, 422–443 (1895)

    MATH  Google Scholar 

  2. Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966)

    Google Scholar 

  3. Sagdeev, R.Z., Leontovich, M.A.: Reviews of Plasma Physics, pp. 23–91. Consultants Bureau New York, New York (1966)

    Google Scholar 

  4. Synge, J.L.: The Relativistic Gas. North-Holland Pub. Co. Interscience, Amsterdam (1957)

    MATH  Google Scholar 

  5. Das, G.C., Paul, S.N.: Ion-acoustic solitary waves in relativistic plasmas. Phys. Fluids 28, 823–825 (1985)

    MATH  Google Scholar 

  6. Nejoh, Y.: The effect of the ion temperature on the ion acoustic solitary waves in a collisionless relativistic plasma. J. Plasma Phys. 37, 487–495 (1987)

    Google Scholar 

  7. Nejoh, Y.: Double layers, spiky solitary waves, and explosive modes of relativistic ion-acoustic waves propagating in a plasma. Phys. Fluids B Plasma Phys. 4, 2830 (1992)

    Google Scholar 

  8. Nejoh, Y.: Large-amplitude ion-acoustic waves in a plasma with a relativistic electron beam. J. Plasma Phys. 56, 67 (1996)

    MATH  Google Scholar 

  9. Das, G.C., Karmakar, B., Paul, S.N.: Propagation of solitary waves in relativistic plasmas. IEEE Trans. Plasma Sci. 16, 22 (1988)

    Google Scholar 

  10. Pakira, G., Roychowdhury, A., Paul, S.N.: Higher-order corrections to the ion-acoustic waves in a relativistic plasma (isothermal case). J. Plasma Phys. 40, 359 (1988)

    Google Scholar 

  11. Kuehl, H.H., Zhang, C.Y.: Effects of ion drift on small-amplitude ion-acoustic solitons. Phys. Fluids B Plasma Phys. 3, 26–28 (1991)

    Google Scholar 

  12. Malik, H.K., Singh, S., Dahiya, R.P.: Ion acoustic solitons in a plasma with finite temperature drifting ions: limit on ion drift velocity. Phys. Plasmas 1, 1137 (1994)

    Google Scholar 

  13. Chatterjee, P., Roychoudhury, R.: Effect of ion temperature on large-amplitude ion-acoustic solitary waves in relativistic plasma. Phys. Plasmas 1, 2148 (1994)

    Google Scholar 

  14. El-Labany, S.K., Shaaban, S.M.: Contribution of higher-order nonlinearity to nonlinear ion-acoustic waves in a weakly relativistic warm plasma. Part 2. Non-isothermal case. J. Plasma Phys. 53, 245–252 (1995)

    Google Scholar 

  15. Kalita, B.C., Barman, S.N., Goswami, G.: Weakly relativistic solitons in a cold plasma with electron inertia. Phys. Plasmas 3, 145 (1996)

    Google Scholar 

  16. Roychoudhury, R., Venkatesan, S.K., Das, C.: Effects of ion and electron drifts on large amplitude solitary waves in a relativistic plasma. Phys. Plasmas 4, 4232 (1997)

    Google Scholar 

  17. Singh, K., Kumar, V., Malik, H.K.: Electron inertia effect on small amplitude solitons in a weakly relativistic two-fluid plasma. Phys. Plasmas 12, 052103 (2005)

    Google Scholar 

  18. Gill, T.S., Singh, A., Kaur, H., Saini, N.S., Bala, P.: Ion-acoustic solitons in weakly relativistic plasma containing electron-positron and ion. Phys. Lett. A 361, 364–367 (2007)

    Google Scholar 

  19. Kalita, B.C., Das, R., Sarmah, H.K.: Relativistic solitons in a magnetized warm plasma. Int. J. Appl. Math. Mech. 7, 51–60 (2011)

    MATH  Google Scholar 

  20. Kalita, B.C., Das, R., Sarmah, H.K.: Weakly relativistic solitons in a magnetized ion-beam plasma in presence of electron inertia. Phys. Plasmas 18, 012304 (2011)

    Google Scholar 

  21. Esfandyari, A.R., Khorram, S., Rostami, A.: Ion-acoustic solitons in a plasma with a relativistic electron beam. Phys. Plasmas 8, 4753–4761 (2001)

    Google Scholar 

  22. Roychoudhury, R.K., Bhattacharyya, S.: Ion-acoustic solitary waves in relativistic plasmas. Phys. Fluids 30, 2582–2584 (1987)

    MATH  Google Scholar 

  23. Ghosh, K.K., Ray, D.: Ion acoustic solitary waves in relativistic plasmas. Phys. Fluids B Plasma Phys. 3, 300 (1991)

    Google Scholar 

  24. Kuehl, H.H., Zhang, C.Y.: Effect of ion drift on arbitrary-amplitude ion-acoustic solitary waves. Phys. Fluids B Plasma Phys. 3, 555–559 (1991)

    Google Scholar 

  25. Nejoh, Y., Sanuki, H.: Large amplitude Langmuir and ion-acoustic waves in a relativistic two-fluid plasma. Phys. Plasmas 1, 2154–2162 (1994)

    Google Scholar 

  26. Chatterjee, P., Jana, R., Das, B.: Effect of electron inertia on the speed and shape of ion-acoustic solitary waves in relativistic plasma. Czechoslovak J. Phys. 55, 489 (2005)

    Google Scholar 

  27. Sah, O.P., Goswami, K.S.: Small amplitude modified electron acoustic solitary waves in semirelativistic plasmas. Phys. Plasmas 2, 365 (1995)

    Google Scholar 

  28. Sah, O.P., Goswami, K.S.: Nonlinear propagation of small-amplitude modified electron acoustic solitary waves and double layer in semirelativistic plasmas. Phys. Plasmas 1, 3189 (1994)

    Google Scholar 

  29. Sahu, B., Roychoudhury, R.: Electron-acoustic solitary waves and double layers in a relativistic electron-beam plasma system. Phys. Plasmas 11, 1947 (2004)

    Google Scholar 

  30. Kalita, B.C., Kalita, M.K., Chutia, J.: Drifting effect of electrons on fully non-linear ion acoustic waves in a magnetoplasma. J. Phys. A Math. Gen. 19, 3559 (1986)

    MATH  Google Scholar 

  31. Kalita, B.C., Bhatta, R.P.: Highly nonlinear ion-acoustic solitons in a warm magnetoplasma with drifting effect of electrons. Phys. Plasmas 1, 2172 (1994)

    Google Scholar 

  32. Lee, N.C., Choi, C.R.: Ion-acoustic solitary waves in a relativistic plasma. Phys. Plasmas 14, 022307 (2007)

    Google Scholar 

  33. Qu, Q.X., Tian, B., Liu, W.J., Li, M., Sun, K.: Painleve´ integrability and N-soliton solution for the variable-coefficient Zakharov–Kuznetsov equation from plasmas. Nonlinear Dyn. 62, 229–235 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Das, R.: Effect of ion temperature on small-amplitude ion-acoustic solitons in a magnetized ion-beam plasma in presence of electron inertia. Astrophys. Space Sci. 341, 543–549 (2012)

    Google Scholar 

  35. Kalita, B.C., Deka, M.: Investigation of ion-acoustic solitons (IAS) in a weakly relativistic magnetized plasma. Astrophys. Space Sci. 347, 109–117 (2013)

    MATH  Google Scholar 

  36. Sultana, S.: Ion-acoustic solitons in magnetized collisional non-thermal dusty plasmas. Phys. Lett. A 382, 1368–1373 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Kamalam, T., Ghosh, S.S.: Ion-acoustic super solitary waves in a magnetized plasma. Phys. Plasmas 25, 122302 (2018)

    Google Scholar 

  38. Mushinzimana, X., Nsengiyumva, F.: Large amplitude ion-acoustic solitary waves in a warm negative ion plasma with superthermal electrons: The fast mode revisited. AIP Adv. 10, 065305 (2020)

    Google Scholar 

  39. Nooralishahi, F., Salem, M.K.: Relativistic magnetized electron-positron quantum plasma and large-amplitude solitary electromagnetic waves. Braz. J. Phys. 51, 1689–1697 (2021)

    Google Scholar 

  40. Kalita, J., Das, R., Hosseini, K., Baleanu, D., Salahshour, S.: Solitons in magnetized plasma with electron inertia under weakly relativistic effect. Nonlinear Dyn. 111, 3701–3711 (2023)

    Google Scholar 

  41. Almas, Ata-Ur-Rahman, Khalid, M., Eldin, S.M.: Oblique propagation of arbitrary amplitude ion acoustic solitary waves in anisotropic electron positron ion plasma. Front. Phys. 11, 1144175 (2023)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

BM—Writing—original draft, Methodology, Formal analysis; RD—Conceptualization, Writing—original draft, Formal analysis; KH—Writing – original draft, Methodology, Writing—review & editing; DB—Writing—review & editing; SS—Writing—review & editing

Corresponding author

Correspondence to K. Hosseini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Multiplying both sides of Eq. (17) by the expression in the parenthesis of left hand side, we obtain

$$ \frac{1}{2}\frac{d}{d\xi }\left\{ {f\left( n \right)\frac{1}{n}\frac{dn}{{d\xi }}} \right\}^{2} = \frac{1}{{k_{x} }}\left( {1 - \frac{1}{n}} \right)\left\{ {1 + Q - \frac{{k_{z}^{2} }}{{M^{2} }}.\,n + \frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}.\,\left( {1 - \frac{1}{n}} \right)^{2} } \right\}f\left( n \right)\frac{dn}{{d\xi }} $$

By integrating, we get

$$ \begin{gathered} \frac{1}{2}\left\{ {f\left( n \right)\frac{1}{n}\frac{dn}{{d\xi }}} \right\}^{2} = \frac{1}{{k_{x} }}\int {\left( {1 - \frac{1}{n}} \right)\left\{ {1 + Q - \frac{{k_{z}^{2} }}{{M^{2} }}.\,n + \frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}.\,\left( {1 - \frac{1}{n}} \right)^{2} } \right\}f\left( n \right)dn} \hfill \\ \quad \quad \quad \quad \quad \quad \quad = \,\frac{1}{{k_{x} }}\int {\left( {1 - \frac{1}{n}} \right)\left\{ {1 + Q - \frac{{k_{z}^{2} }}{{M^{2} }}.\,n + \frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}.\,\left( {1 - \frac{1}{n}} \right)^{2} } \right\}\left( {T_{1} + \frac{{T_{2} }}{{n^{2} }} + \frac{{T_{3} }}{{n^{3} }} + \frac{{T_{4} }}{{n^{4} }}} \right)dn} \hfill \\ \end{gathered} $$
$$\begin{gathered} \frac{1}{2}\left\{ {f\left( n \right)} \right\}^{2} \frac{1}{{n^{2} }}\left( {\frac{dn}{{d\xi }}} \right)^{2} = \frac{1}{{k_{x} }}\left[ {\left\{ {\left( {1 + Q + \frac{{k_{z}^{2} }}{{M^{2} }} + \frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{1} } \right\}\left( {n - 1} \right) - \left( {\frac{{T_{1} k_{z}^{2} }}{{2M^{2} }}} \right)} \right.\left( {n^{2} - 1} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \left\{ {\frac{{T_{2} k_{z}^{2} }}{{M^{2} }} + \left( {1 + Q + \frac{{3QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{1} } \right\}\log n \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \left\{ {\left( {1 + Q + \frac{{k_{z}^{2} }}{{M^{2} }} + \frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{2} + \left( {\frac{{3QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{1} - \frac{{T_{3} k_{z}^{2} }}{{M^{2} }}} \right\}\left( {\frac{1}{n} - 1} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \frac{1}{2}\left\{ {\left( {1 + Q + \frac{{k_{z}^{2} }}{{M^{2} }} + \frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{3} - \left( {1 + Q + \frac{{3QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{2} - \left( {\frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{1} - \frac{{T_{4} k_{z}^{2} }}{{M^{2} }}} \right\}\left( {\frac{1}{{n^{2} }} - 1} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \frac{1}{3}\left\{ {\left( {1 + Q + \frac{{k_{z}^{2} }}{{M^{2} }} + \frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{4} - \left( {1 + Q + \frac{{3QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{3} + \left( {\frac{{3QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{2} } \right\}\left( {\frac{1}{{n^{3} }} - 1} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \frac{1}{4}\left\{ {\left( {1 + Q + \frac{{3QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{4} - \left( {\frac{{3QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{3} + \left( {\frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{2} } \right\}\left( {\frac{1}{{n^{4} }} - 1} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \frac{1}{5}\left\{ {\left( {\frac{{3QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{4} - \left( {\frac{{QM^{2} }}{{2c^{2} k_{z}^{2} }}} \right)T_{3} } \right\}\left( {\frac{1}{{n^{5} }} - 1} \right) + \left. {\left( {\frac{{T_{4} QM^{2} }}{{12c^{2} k_{z}^{2} }}} \right)\left( {\frac{1}{{n^{6} }} - 1} \right)} \right] \, \hfill \\ \end{gathered}$$

After simplification, we find the exact from of Eq. (18).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhukalya, B., Das, R., Hosseini, K. et al. Ion-Acoustic Solitons in Magnetized Plasma Under Weak Relativistic Effects on the Electrons. Int. J. Appl. Comput. Math 9, 102 (2023). https://doi.org/10.1007/s40819-023-01579-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01579-3

Keywords

Navigation