Skip to main content
Log in

Calculation of binodals and spinodals in multicomponent alloys by different statistical methods with application to iron-copper-manganese alloys

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A generalization of the pair-cluster (PC) approximation in the theory of disordered systems to multicomponent alloys is proposed. It is shown that phase equilibrium boundaries (binodals) calculated in the mean-field (MF) approximation, which is used in standard calculations of phase diagrams by the CALPHAD method, coincide with the results of rigorous calculations for dilute alloys; however, the application of these methods to calculating the boundaries of the stability region with respect to the decomposition of an alloy (spinodals) leads to large errors. At the same time, in the PC approximation, the description of all statistical properties, including binodals and spinodals, turns out to be exact for dilute alloys. The methods developed are illustrated by an example of iron-copper-manganese ternary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Miettinen, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 27, 141 (2003).

    MathSciNet  Google Scholar 

  2. K. D. Belashchenko and V. G. Vaks, J. Phys.: Condens. Matter 10, 1965 (1998).

    Article  ADS  Google Scholar 

  3. V. G. Vaks, Phys. Rep. 391, 157 (2004).

    Article  ADS  Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics: Part 2 (Nauka, Moscow, 2001; Butterworth-Heinemann, Oxford, 2002), Sect. 45.

    Google Scholar 

  5. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959).

    Article  ADS  Google Scholar 

  6. T. Koyama and H. Onodera, Mater. Trans. 46, 1187 (2005).

    Article  Google Scholar 

  7. C. Zhang and M. Enomoto, Acta Mater. 54, 4183 (2006).

    Article  Google Scholar 

  8. K. Yu. Khromov, F. Soisson, A. Yu. Stroev, and V. G. Vaks, http://arxiv.org/abs/0911.5558.

  9. F. Soisson and C.-C. Fu, Phys. Rev. B: Condens. Matter 76, 214 102 (2007).

    ADS  Google Scholar 

  10. M. K. Miller, B. D. Wirth and G. R. Odette, Mater. Sci. Eng., A 353, 133 (2003).

    Article  Google Scholar 

  11. D. Isheim, M. S. Gagliano, M. E. Fine, and D. N. Seidman, Acta Mater. 54, 841 (2006).

    Article  Google Scholar 

  12. D. Isheim, R. P. Kolli, M. E. Fine, and D. N. Seidman, Scr. Mater. 55, 35 (2006).

    Article  Google Scholar 

  13. R. Rana, W. Bleck, S. B. Singh, and O. N. Mohanti, Mater. Lett. 61, 2919 (2007).

    Article  Google Scholar 

  14. V. G. Vaks and G. D. Samolyuk, Zh. Éksp. Teor. Fiz. 115(1), 158 (1999) [JETP 88 (1), 89 (1999)].

    Google Scholar 

  15. H. Tanaka, T. Yokokawa, H. Abe, H. Hayashi, and T. Nishi, Phys. Rev. Lett. 65, 3136 (1990).

    Article  ADS  Google Scholar 

  16. V. G. Vaks, S. V. Beiden, and V. Yu. Dobretsov, Pis’ma Zh. Éksp. Teor. Fiz. 61(1), 65 (1995) [JETP Lett. 61 (1), 68 (1995)].

    Google Scholar 

  17. A. Yu. Stroev, I. R. Pankratov, and V. G. Vaks, Phys. Rev. B: Condens. Matter 77, 134203 (2008).

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1995; Butterworth-Heinemann, Oxford, 1996), Sect. 74–77.

    Google Scholar 

  19. V. G. Vaks and K. Yu. Khromov, Zh. Éksp. Teor. Fiz. 133(1), 115 (2008) [JETP 106 (1), 94 (2008)].

    Google Scholar 

  20. E. Vincent, C. S. Becquart, and C. Domain, J. Nucl. Mater. 351, 88 (2006).

    Article  ADS  Google Scholar 

  21. I. R. Pankratov and V. G. Vaks, Phys. Rev. B: Condens. Matter 68, 134 208 (2003).

    Google Scholar 

  22. M. Hillert and M. Jarl, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 2, 227 (1978).

    Google Scholar 

  23. V. Yu. Dobretsov and V. G. Vaks, J. Phys.: Condens. Matter 10, 2275 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vaks.

Additional information

Original Russian Text © V.G. Vaks, I.A. Zhuravlev, K.Yu. Khromov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 5, pp. 902–920.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaks, V.G., Zhuravlev, I.A. & Khromov, K.Y. Calculation of binodals and spinodals in multicomponent alloys by different statistical methods with application to iron-copper-manganese alloys. J. Exp. Theor. Phys. 111, 796–813 (2010). https://doi.org/10.1134/S1063776110110117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110117

Keywords

Navigation