Skip to main content
Log in

Internal waves in a compressible two-layer model atmosphere: Hamiltonian description

  • Solids And Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider slow, compared to the speed of sound, motions of an ideal compressible fluid (gas) in a gravitational field in the presence of two isentropic layers with a small specific-entropy difference between them. Assuming the flow to be potential in each of the layers (v 1, 2 = ▿ϕ1, 2) and neglecting the acoustic degrees of freedom (div(\( \bar \rho \)(z)▿ϕ1, 2) ≈ 0, where \( \bar \rho \)(z) is the average equilibrium density), we derive the equations of motion for the boundary in terms of the shape of the surface z = η(x, y, t) itself and the difference between the boundary values of the two velocity field potentials: ψ(x, y, t) = ψ1 − ψ2. We prove the Hamilto nian structure of the derived equations specified by a Lagrangian of the form ℒ = ∫\( \bar \rho \)(η)η t ψdxdy − ℋ{η, ψ}. The system under consideration is the simplest theoretical model for studying internal waves in a sharply stratified atmosphere in which the decrease in equilibrium gas density due to gas compressibility with increasing height is essentially taken into account. For plane flows, we make a generalization to the case where each of the layers has its own constant potential vorticity. We investigate a system with a model dependence \( \bar \rho \)(z) ∝ e −2αz with which the Hamiltonian ℋ{η, ψ} can be represented explicitly. We consider a long-wavelength dynamic regime with dispersion corrections and derive an approximate nonlinear equation of the form u t + auu x b[−\( \hat \partial _x^2 \) + α2]1/2 u x = 0 (Smith’s equation) for the slow evolution of a traveling wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Christie, J. Atmos. Sci. 46, 1462 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  2. J. W. Rottman and F. Einaudi, J. Atmos. Sci. 50, 2116 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  3. M. G. Wurtele, R. D. Sharman, and A. Datta, Annu. Rev. Fluid Mech. 28, 429 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Kataoka, M. Tsutahara, and T. Akuzawa, Phys. Rev. Lett. 84, 1447 (2000).

    Article  ADS  Google Scholar 

  5. Y. V. Lvov and E. G. Tabak, Phys. Rev. Lett. 87, 168501 (2001).

    Article  ADS  Google Scholar 

  6. R. Grimshaw, E. Pelinovsky, and O. Poloukhina, Nonlinear Processes Geophys. 9, 221 (2002).

    Article  ADS  Google Scholar 

  7. V. Vlasenko, P. Brandt, and A. Rubino, J. Phys. Oceanogr. 30, 2172 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  8. V. Vlasenko and K. Hutter, J. Phys. Oceanogr. 32, 1779 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  9. V. Vlasenko and N. Stashchuk, J. Phys. Oceanogr. 36, 1959 (2006).

    Article  ADS  Google Scholar 

  10. R. Grimshaw, E. Pelinovsky, and T. Talipova, Surv. Geophys. 27, 273 (2007).

    Article  ADS  Google Scholar 

  11. W. Choi and R. Camassa, J. Fluid Mech. 396, 1 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. W. Craig, P. Guyenne, and H. Kalisch, Commum. Pure Appl. Math. 58, 1587 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. R. de Zarate and A. Nachbin, Commun. Math. Sci. 6, 385 (2008).

    MATH  MathSciNet  Google Scholar 

  14. J. L. Bona, D. Lannes, and J.-C. Saut, J. Math. Pures Appl. 89, 538 (2008).

    MATH  MathSciNet  Google Scholar 

  15. N. N. Romanova and I. G. Yakushkin, Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 579 (2007).

    Google Scholar 

  16. N. N. Romanova, Izv. Akad. Nauk, Fiz. Atmos. Okeana 44, 56 (2008).

    Google Scholar 

  17. V. P. Goncharov, Izv. Akad. Nauk, Fiz. Atmos. Okeana 22, 468 (1986).

    Google Scholar 

  18. Y. Ogura and N. A. Phillips, J. Atmos. Sci. 19, 173 (1962).

    Article  ADS  Google Scholar 

  19. D. R. Durran, J. Atmos. Sci. 46, 1453 (1989).

    Article  ADS  Google Scholar 

  20. P. R. Bannon, J. Atmos. Sci. 53, 3618 (1996).

    Article  ADS  Google Scholar 

  21. V. P. Ruban, Phys. Rev. D: Part. Fields 62, 127504 (2000).

    MathSciNet  ADS  Google Scholar 

  22. V. P. Ruban, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 036 305 (2001).

    Google Scholar 

  23. V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).

    Article  ADS  Google Scholar 

  24. V. E. Zakharov, Eur. J. Mech. B/Fluids 18, 327 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 167(11), 1137 (1997) [Phys.-Usp. 40 (11), 1087 (1997)].

    Article  Google Scholar 

  26. T. B. Benjamin, J. Fluid Mech. 29, 559 (1967).

    Article  MATH  ADS  Google Scholar 

  27. H. Ono, J. Phys. Soc. Jpn. 39, 1082 (1975).

    Article  ADS  Google Scholar 

  28. R. Smith, J. Fluid Mech. 52, 379 (1972).

    Article  MATH  ADS  Google Scholar 

  29. R. J. Joseph, J. Phys. A: Math. Gen. 10, L225 (1977).

    Article  ADS  Google Scholar 

  30. H. H. Chen and Y. C. Lee, Phys. Rev. Lett. 43, 264 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  31. L. Abdelouhab, J. L. Bona, M. Felland, and J.-C. Saut, Physica D (Amsterdam) 40, 360 (1989).

    MATH  MathSciNet  ADS  Google Scholar 

  32. E. Wahlen, Lett. Math. Phys. 79, 303 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ruban.

Additional information

Original Russian Text © V.P. Ruban, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 5, pp. 881–891.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruban, V.P. Internal waves in a compressible two-layer model atmosphere: Hamiltonian description. J. Exp. Theor. Phys. 111, 776–785 (2010). https://doi.org/10.1134/S1063776110110099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110110099

Keywords

Navigation