Skip to main content
Log in

Evolution of the electronic properties of transition metal nanoclusters on graphite surface

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electronic properties of nanoclusters of transition (Ni, Co, Cr) and noble (Au, Cu) metals deposited on the surface of highly oriented pyrolytic graphite (HOPG) are studied using the method of X-ray photoelectron spectroscopy. The laws of variation of a change ΔE b in the binding energies of core-level electrons in the initial (ΔE i) and final (ΔE f) states of atoms in nanoclusters, the intrinsic widths γ of photoelectron lines, and their singularity indices α as functions of the metal cluster size d are determined. A qualitative difference in behavior of the ΔE i(d) and α(d) values in metals of the two groups (Ni, Cr versus Co, Cu) is found. The values of the final-state energy (ΔE f < 0) and the line width (Δγ > 0) in the clusters of all metals studied vary in a similar manner. It is shown that a significant contribution to E i is due to a transfer of the valence-shell electrons at the cluster-substrate interface, which is caused by the contact potential difference. The value of an uncompensated charge per nanocluster is determined as a function of the cluster size and the number of atoms in the cluster. The behavior of ΔE f(d) is controlled by the Coulomb energy of a charged cluster and by a decrease in the efficiency of electron screening, which is different in the metals studied. The broadening of photoelectron lines is determined by a spread of the cluster sizes and by lower electron screening in the final Fermi system. An asymmetry of the core-level electron spectra of nanoclusters can be explained using notions about the electron-hole pair excitation near the Fermi level. The effect of the structure of the density of electron states in the d band of transition metals on the asymmetry of photoelectron lines is considered and it is concluded that this structure near the Fermi level qualitatively changes with a decrease in the nanocluster size. The obtained results indicate that the behavior of the electron subsystem of clusters of the d-metals in a size range of 2–10 nm under consideration is close to the behavior of a normal Fermi system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. P. Halperin, Rev. Mod. Phys. 58, 533 (1986).

    Article  ADS  Google Scholar 

  2. S. H. M. Persson, L. Olofsson, and L. Gunnarsson, Appl. Phys. Lett. 74, 2546 (1999).

    Article  ADS  Google Scholar 

  3. V. Yu. Irkhin and Yu. P. Irkhin, Electronic Structure, Correlation Effects, and Physical Properties of d- and f-Metals and Their Compounds (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia, 2004; Cambridge International Science, Cambridge, 2007).

    Google Scholar 

  4. D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1986; Mir, Moscow, 1989).

    Google Scholar 

  5. G. Wertheim, in Electron and Ion Spectroscopy of Solids, Ed. by L. Fiermans, J. Vennik, and W. Dekeyser (Plenum, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  6. V. V. Nemoshkalenko and V. G. Aleshin, Electron Spectroscopy of Crystals (Naukova Dumka, Kiev, 1976; Plenum, New York, 1979).

    Google Scholar 

  7. T. L. Barr, Modern ESCA: The Principles and Practice of X-ray Photoelectron Spectroscopy (CRC Press, Boca Raton, Florida, United States, 1994), p. 300.

    Google Scholar 

  8. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Microscopy (Wiley, New York, 1983; Mir, Moscow, 1987).

    Google Scholar 

  9. W. F. Egelhoff, Jr., Surf. Sci. Rep. 6, 253 (1987).

    Article  ADS  Google Scholar 

  10. G. K. Wertheim, Phys. Rev. B: Condens. Matter 36, 9559 (1987).

    ADS  Google Scholar 

  11. X. Ch. Lai, M. A. Pushkin, and V. I. Troyan, Surf. Interface Anal. 36, 1199 (2004).

    Article  Google Scholar 

  12. I. Jirka, Surf. Sci. 232, 307 (1990).

    Article  ADS  Google Scholar 

  13. Y. Wu, E. Garfunkel, and T. E. Madey, J. Vac. Sci. Technol., A 14, 1662 (1996).

    Article  ADS  Google Scholar 

  14. D.-Q. Yang and E. Sacher, Appl. Surf. Sci. 195, 187 (2002).

    Article  ADS  Google Scholar 

  15. S. Zafeiratos and S. Kennou, Surf. Sci. 443, 238 (1999).

    Article  ADS  Google Scholar 

  16. M. G. Mason, Phys. Rev. B: Condens. Matter 27, 748 (1983).

    ADS  Google Scholar 

  17. M. K. Bahl, S. C. Tsai, and Y. W. Chung, Phys. Rev. B: Condens. Matter 21, 1344 (1980).

    ADS  Google Scholar 

  18. B. Richter, H. Kuhlenbeck, H.-J. Freund, and P. S. Bagus, Phys. Rev. Lett. 93, 026 805 (2004).

    Google Scholar 

  19. R. A. Gibbs, N. Winograd, and V. Y. Young, J. Chem. Phys. 72, 4799 (1980).

    Article  ADS  Google Scholar 

  20. P. H. Citrin and G. K. Wertheim, Phys. Rev. B: Condens. Matter 27, 3176 (1983).

    ADS  Google Scholar 

  21. G. K. Wertheim, Z. Phys. B: Condens. Matter 66, 53 (1987).

    Article  ADS  Google Scholar 

  22. V. D. Borman, P. V. Borisyuk, V. V. Lebid’ko, M. A. Pushkin, V. N. Tronin, V. I. Troyan, D. A. Antonov, and D. O. Filatov, Zh. Éksp. Teor. Fiz. 129(2), 343 (2006) [JETP 102 (2), 303 (2006)].

    Google Scholar 

  23. P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).

    Article  ADS  Google Scholar 

  24. D. C. Langreth, Phys. Rev. B: Solid State 1, 471 (1970).

    ADS  Google Scholar 

  25. J. J. Hopfield, Comments Solid State Phys. 2, 2 (1969).

    Google Scholar 

  26. T. T. P. Cheung, Surf. Sci. 140, 151 (1984).

    Article  ADS  Google Scholar 

  27. C. Binns, S. H. Baker, C. Demangeat, and J. C. Parlebas, Surf. Sci. Rep. 34, 107 (1999).

    Article  Google Scholar 

  28. C. Binns, Surf. Sci. Rep. 44, 1 (2001).

    Article  ADS  Google Scholar 

  29. A. Fritsch and P. Légaré, Surf. Sci. 145, L517 (1984).

    Article  Google Scholar 

  30. A. Fritsch and P. Légaré, Surf. Sci. 162, 742 (1985).

    Article  ADS  Google Scholar 

  31. P. H. Citrin and G. K. Wertheim, in Topics in Applied Physics: Photoemission in Solids, Vol. 26: General Principles, Ed. by M. Cardona and L. Ley, (Springer, Heidelberg, 1978), p. 197.

    Google Scholar 

  32. V. N. Nevolin, A. V. Zenkevich, X. Ch. Lai, M. A. Pushkin, V. N. Tronin, and V. I. Troyan, Laser Phys. 11, 824 (2001).

    Google Scholar 

  33. X. Ch. Lai, M. A. Pushkin, V. D. Borman, A. V. Zenkevich, Yu. Yu. Lebedinskiĭ, V. N. Nevolin, V. N. Tronin, and V. I. Troyan, Izv. Akad. Nauk, Ser. Fiz. 64, 702 (2000).

    Google Scholar 

  34. V. D. Borman, A. V. Zenkevich, V. N. Nevolin, M. A. Pushkin, V. N. Tronin, and V. I. Troyan, Zh. Éksp. Teor. Fiz. 130(6), 984 (2006) [JETP 103 (6), 850 (2006)].

    Google Scholar 

  35. M. P. Seah, I. S. Gilmore, and G. Beamson, Surf. Interface Anal. 26, 642 (1998).

    Article  Google Scholar 

  36. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database: Version 3.5, Ed. by C. D. Wagner, A. V. Naumkin, and A. Kraut-Vass; http://srdata.nist.gov/xps.

  37. G. K. Wertheim, Phys. Rev. B: Solid State 16, 4256 (1977).

    ADS  Google Scholar 

  38. S. Doniach and M. Sunjic, J. Phys.: Condens. Matter 3, 285 (1970).

    Google Scholar 

  39. S. Peredkov, G. Öhrvwall, J. Schulz, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, A. Rosso, W. Pokapanich, N. Mårtensson, S. Svensson, S. L. Sorensen, O. Björneholm, and M. Tchaplyguine, Phys. Rev. B: Condens. Matter 75, 235407 (2007).

    ADS  Google Scholar 

  40. S. B. DiCenzo, S. D. Berry, and E. H. Hartford, Jr., Phys. Rev. B: Condens. Matter 38, 8465 (1988).

    ADS  Google Scholar 

  41. W. Eberhardt, P. Fayet, D. M. Cox, Z. Fu, A. Kaldor, R. Sherwood, and D. Sondericker, Phys. Rev. Lett. 64, 780 (1990).

    Article  ADS  Google Scholar 

  42. D.-Q. Yang, M. Meunier, and E. Sacher, Appl. Surf. Sci. 173, 134 (2001).

    Article  ADS  Google Scholar 

  43. N. Mårtensson and B. Johansson, Phys. Rev. Lett. 45, 482 (1980).

    Article  ADS  Google Scholar 

  44. I. Lopez-Salido, D. Ch. Lim, R. Dietsche, N. Bertram, and Y. D. Kim, J. Phys. Chem. B 110, 1128 (2006).

    Article  Google Scholar 

  45. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997); H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Google Scholar 

  46. B. Gady and R. Reifenberger, J. Appl. Phys. 84, 319 (1998).

    Article  ADS  Google Scholar 

  47. W. Song and M. Yoshitake, Appl. Surf. Sci. 251, 14 (2005).

    Article  ADS  Google Scholar 

  48. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  49. N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976; Mir, Moscow, 1979).

    Google Scholar 

  50. G. K. Wertheim, S. B. DiCenzo, and D. N. E. Buchanan, Phys. Rev. B: Condens. Matter 33, 5384 (1986).

    ADS  Google Scholar 

  51. A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988; Mir, Moscow, 1990).

    Google Scholar 

  52. G. Apai, J. F. Hamilton, J. Stohr, and A. Thompson, Phys. Rev. Lett. 43, 165 (1979).

    Article  ADS  Google Scholar 

  53. C. Xu, X. Lai, G. W. Zajac, and D. W. Goodman, Phys. Rev. B: Condens. Matter 56, 13 464 (1997).

    Google Scholar 

  54. P. N. First, J. A. Stroscio, R. A. Dragoset, D. T. Pierce, and R. J. Celotta, Phys. Rev. Lett. 63, 1416 (1989).

    Article  ADS  Google Scholar 

  55. H. Hövel, B. Grimm, M. Bödecker, K. Fieger, and B. Reihl, Surf. Sci. 463, L603 (2000).

    Article  Google Scholar 

  56. A. Bettac, L. Köller, V. Rank, and K. H. Meiwes-Broer, Surf. Sci. 402–404, 475 (1998).

    Article  Google Scholar 

  57. H. Hövel, B. Grimm, M. Pollmann, and B. Reihl, Phys. Rev. Lett. 81, 4608 (1998).

    Article  ADS  Google Scholar 

  58. D. Spanjaard, C. Guillot, M. C. Desjonqueres, G. Treglia, and J. Lecante, Surf. Sci. Rep. 5, 1 (1985).

    Article  Google Scholar 

  59. M. Cini and P. Ascarelli, J. Phys. F: Met. Phys. 4, 1998 (1974).

    Article  ADS  Google Scholar 

  60. P. Ascarelli, M. Cini, G. Missoni, and N. Nistico, J. Phys., Colloq. 38(C2), C2–125 (1977).

    Article  Google Scholar 

  61. G. D. Mahan, Phys. Rev. 163, 612 (1967).

    Article  ADS  Google Scholar 

  62. G. K. Wertheim and L. R. Walker, J. Phys. F: Met. Phys. 6, 2297 (1976).

    Article  ADS  Google Scholar 

  63. P. Ascarelli, Solid State Commun. 21, 205 (1977).

    Article  ADS  Google Scholar 

  64. J. F. Janak, Phys. Rev. B: Solid State 16, 255 (1977).

    ADS  Google Scholar 

  65. R. Ahuja, S. Auluck, O. Eriksson, and B. Johansson, J. Phys.: Condens. Matter 9, 9845 (1997).

    Article  ADS  Google Scholar 

  66. I. Estermann, S. A. Friedberg, and J. E. Goldman, Phys. Rev. 87, 582 (1952).

    Article  ADS  Google Scholar 

  67. D. G. Daunt and C. V. Heer, Phys. Rev. 76, 1324 (1949).

    Article  ADS  Google Scholar 

  68. F. Batallan, I. Rosenman, and S. B. Sommers, Phys. Rev. B: Solid State 11, 545 (1975).

    ADS  Google Scholar 

  69. C. S. Wang and J. Callaway, Phys. Rev. B: Solid State 9, 4897 (1974).

    ADS  Google Scholar 

  70. D. D. Koelling, F. M. Mueller, A. J. Arko, J. B. Ketterson, Phys. Rev. B: Solid State 10, 4889 (1974).

    ADS  Google Scholar 

  71. T. S. Smith and J. G. Daunt, Phys. Rev. 88, 1172 (1952).

    Article  ADS  Google Scholar 

  72. A. Wexler and W. S. Corak, Phys. Rev. 85, 85 (1952).

    Article  ADS  Google Scholar 

  73. R. D. Worley, M. W. Zemansky, and H. A. Boorse, Phys. Rev. 99, 447 (1955).

    Article  ADS  Google Scholar 

  74. M. F. Manning and M. I. Chodorow, Phys. Rev. 56, 787 (1939).

    Article  ADS  Google Scholar 

  75. N. V. Smith, G. K. Wertheim, S. Hüfner, and M. M. Traum, Phys. Rev. B: Solid State 10, 3197 (1974).

    ADS  Google Scholar 

  76. L. Hodges, H. Ehrenreich, and N. D. Lang, Phys. Rev. 152, 505 (1966).

    Article  ADS  Google Scholar 

  77. P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. B: Solid State 16, 4256 (1977).

    ADS  Google Scholar 

  78. P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. Lett. 35, 885 (1975).

    Article  ADS  Google Scholar 

  79. F. Sette, G. K. Wertheim, Y. Ma, G. Meigs, S. Modesti, and C. T. Chen, Phys. Rev. B: Condens. Matter 41, 9766 (1990).

    ADS  Google Scholar 

  80. G. K. Wertheim and D. M. Riffe, Phys. Rev. B: Condens. Matter 52, 14 906 (1995).

    Google Scholar 

  81. G. K. Wertheim, D. M. Riffe, and P. H. Citrin, Phys. Rev. B: Condens. Matter 45, 8703 (1992).

    ADS  Google Scholar 

  82. S. Hüfner and G. K. Wertheim, Phys. Rev. B: Solid State 11, 678 (1975).

    ADS  Google Scholar 

  83. G. K. Wertheim and D. N. E. Buhanan, Phys. Rev. B: Solid State 16, 2613 (1977).

    ADS  Google Scholar 

  84. G. K. Wertheim and S. Hüfner, Phys. Rev. Lett. 35, 53 (1975).

    Article  ADS  Google Scholar 

  85. D. M. Riffe, W. Hale, B. Kim, and J. L. Erskine, Phys. Rev. B: Condens. Matter 51, 11 012 (1995).

    Google Scholar 

  86. G. K. Wertheim, P. H. Citrin, and J. F. van der Veen, Phys. Rev. B: Condens. Matter 30, 4343 (1984).

    ADS  Google Scholar 

  87. S. Hüfner, G. K. Wertheim, and J. H. Wernick, Solid State Commun. 17, 417 (1975).

    Article  Google Scholar 

  88. P. Blaha and J. Callaway, Phys. Rev. B: Condens. Matter 33, 1706 (1986).

    ADS  Google Scholar 

  89. G. Y. Guo and H. H. Wang, Phys. Rev. B: Condens. Matter 62, 5136 (2000).

    MathSciNet  ADS  Google Scholar 

  90. K. Lee, J. Callaway, K. Kwong, R. Tang, and A. Ziegler, Phys. Rev. B: Condens. Matter 31, 1796 (1985).

    ADS  Google Scholar 

  91. K. Lee and J. Callaway, Phys. Rev. B: Condens. Matter 48, 15 358 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pushkin.

Additional information

Original Russian Text © V.D. Borman, M.A. Pushkin, V.N. Tronin, V.I. Troyan, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 137, No. 6, pp. 1151–1174.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borman, V.D., Pushkin, M.A., Tronin, V.N. et al. Evolution of the electronic properties of transition metal nanoclusters on graphite surface. J. Exp. Theor. Phys. 110, 1005–1025 (2010). https://doi.org/10.1134/S1063776110060117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110060117

Keywords

Navigation