Skip to main content

Conditions of Spontaneous Growth of Iron Subnanocluster: The Influence of Impurity Atoms

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

Abstract

Energy change of an iron face-centered subnanocluster of cubic type, depending on the position of a carbon interstitial atom and substitutional atoms of nickel, were evaluated using the molecular mechanics method. Calculation of possible positions of impurity atoms shows that energy change of a cluster is discrete or nearly continuous at certain positions of the atoms. It is shown that there are certain positions of substitutional atoms which improve the drift of interstitial atoms to the surface.

The positions of nickel atoms which essentially decrease the potential barrier for the carbon atom were identified, and there is minimum energy loss on the way to the surface; the conditions for spontaneous growth of the cluster were implemented. The basic mechanism of the formation of the initial clusters and nanocrystals on the free surface was described, which changes the symmetry of the atomic group due to changes in the positions of impurity atoms, contributing to the further growth of crystals of the new phase and the formation of new cluster groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

fcc:

Face-centered cubic

CIS:

Central (octahedral) interstitial site

PB:

Potential barrier

SIS:

Surface interstitial site

References

  1. Cahn J (1960) Theory of crystal growth and interface motion in crystalline materials. Acta Metall 8:554–562. doi:10.1016/0001-6160(60)90110-3

    Article  Google Scholar 

  2. Mullin JW (2001) Crystallization, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Mutaftschiev B (2001) The atomistic nature of crystal growth. Springer, Berlin

    Book  Google Scholar 

  4. Gibbs JW (1961) The scientific papers of J. Willard Gibbs. In: Thermodynamics, vol 1. Dover, New York

    Google Scholar 

  5. Curie P (1970) Pierre Curie: on the formation of crystals and capillary constants of their different faces. J Chem Educ 47:636. doi:10.1021/ed047p636

    Article  Google Scholar 

  6. Wulff G (1901) Zur frage der geschwindigkeit des wachstums und der auflösung der krystallflagen. Z Kryst Mineral 34(5/6):449–530

    Google Scholar 

  7. Mamonova MV, Prudnikov VV, Prudnikova IA (2014) Surface physics. Theoretical models and experimental methods. CRC Press, New York

    Google Scholar 

  8. Winegard WC (1964) An introduction to the solidification of metals. Institute of Metals, London

    Google Scholar 

  9. Kashchiev D (2000) Nucleation: theory and basic applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  10. Ring TA (2001) Nano-size cluster nucleation. Adv Colloid Interface Sci 91:473–499. doi:10.1016/S0001-8686(00)00073-7

    Article  Google Scholar 

  11. Hudke M, Sitarz M, Rokita M (2003) Nanolikwacja i nanokrystalizacja w szkłach krzemianowo-fosforanowych (Nanoliquation and nanocrystallisation in the phospho-silicate glasses). Archiwum Nauki o Materiałach 24(4):467–475

    Google Scholar 

  12. Finney EE, Finke RG (2008) Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J Colloid Interface Sci 317(2):351–374. doi:10.1016/j.jcis.2007.05.092

    Article  Google Scholar 

  13. Alonso JA (2005) Structure and properties of atomic nanoclusters. World Scientific, Singapore. doi:10.1142/9781860947414_0006

  14. Venables JA, Spiller GDT, Hunbucken M (1984) Nucleation and growth of thin. Rep Prog Phys 47:399–459. doi:10.1088/0034-4885/47/4/002

    Article  ADS  Google Scholar 

  15. Habraken WJEM, Tao J, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, Verch A, Dmitrovic V, Bomans PHH, Frederik PM, Laven J, van der Schoot P, Aichmayer B, de With G, DeYoreo JJ, Sommerdijk NAJM (2013) Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1507. doi:10.1038/ncomms2490

    Article  ADS  Google Scholar 

  16. Baumgartner J, Dey A, Bomans PHH, Coadou CL, Fratzl P, Sommerdijk NAJM, Faivre D (2013) Nucleation and growth of magnetite from solution. Nat Mater 12:310–314. doi:10.1038/nmat3558

    Article  ADS  Google Scholar 

  17. Kumar R (1969) Clusters in liquid metals. Contemp Phys 10(1):49–58. doi:10.1080/00107516908204562

    Article  ADS  Google Scholar 

  18. Styles GA (1967) Influence of short-range atomic order on nuclear magnetic resonance in liquid alloys. J Adv Phys 16(62):275–286. doi:10.1080/00018736700101385

    Article  ADS  Google Scholar 

  19. Helmy HM, Ballhaus C, Fonseca ROC, Wirth R, Nagel T, Tredoux M (2013) Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. Nat Commun 4:2405. (www.nature.com/naturecommunications). doi:10.1038/ncomms3405

  20. Berry RS, Smirnov BM (2014) Ions in liquid metal clusters. Theor Chem Acc 133:1543. doi:10.1007/s00214-014-1543-0

    Article  Google Scholar 

  21. Woehl TJ, Evans JE, Arslan I, Ristenpart WD, Browning ND (2012) Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6(10):8599–8610. doi:10.1021/nn303371y

    Article  Google Scholar 

  22. Lim B, Jiang M, Yu T, Camargo PHC, Xia Y (2010) Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res 3:69–80. doi:10.1007/s12274-010-1010-8

    Article  Google Scholar 

  23. Sree Harsha KS (2006) Principles of physical vapor deposition of thin films. Elsevier, Oxford

    Google Scholar 

  24. Smirnov BM (2010) Cluster processes in gases and plasmas. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/9783527628650.ch5

    Book  Google Scholar 

  25. Padovani S, D’Acapio F, Cattaruzza E, De Lorenzi A, Gonella F, Mattei G, Maurizio C, Mazzoldi P, Montagna M, Ronchin S, Tosello C, Ferrari M (2002) Metal nanocluster formation in silica films prepared by rf-sputtering: an experimental study. Eur Phys J B 25:11–17. doi:10.1140/e10051-002-0002-1

    ADS  Google Scholar 

  26. Yamamuro S, Sumiyama K, Suzuki K (1999) Monodispersed Cr cluster formation by plasma-gas-condensation. J Appl Phys 85(1):483–489. doi:10.1063/1.369476

    Article  ADS  Google Scholar 

  27. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloys clusters and nanoparticles. Chem Rev 108(3):845–910. doi:10.1021/cr040090g

    Article  Google Scholar 

  28. Rossi G, Ferrando R (2009) Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms. J Phys Condens Matter 21(8):084208. doi:10.1088/0953-8984/21/8/084208 (11pp)

    Article  ADS  Google Scholar 

  29. Martin TP (1996) Shells of atoms. Phys Rep 273:199–241. doi:10.1016/0370-1573(95)00083-6

    Article  ADS  Google Scholar 

  30. Auer S, Frenkel D (2001) Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature 413:711–713. doi:10.1038/35099513

    Article  ADS  Google Scholar 

  31. Yi X-H, Liu R-S, Tian Z-A, Hou Z-Y, Li X-Y, Zhou Q-Y (2008) Formation and evolution properties of clusters in liquid metal copper during rapid cooling processes. Trans Nonferrous Met Soc China 18:33–39. doi:10.1016/S1003-6326(08)60007-2

    Article  Google Scholar 

  32. Li ZN, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanocluster. Nature 451:46–49. doi:10.1038/nature06470

    Article  Google Scholar 

  33. Cherian R, Gerard C, Mahadevan P, Cuong NT, Maezono R (2010) Size dependence of the bulk modulus of semiconductor nanocrystals from first-principles calculation. Phys Rev B 82:2553321. doi:10.1103/PhysRevB.82.235321

    Article  Google Scholar 

  34. Lewars EG (2011) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics, 2nd edn. Springer, Berlin. doi:10.1007/978-90-481-3862-3

    Book  Google Scholar 

  35. Ramachandran KI, Deepa G, Namboori K (2008) Computational chemistry and molecular modelling. Principles and applications. Springer, Heidelberg. doi:10.1007/978-3-540-77304-7

    Google Scholar 

  36. Lennard-Jones JE (1924) On the determination of molecular fields. Proc R Soc Lond A 106(738):463–477. doi:10.1098/rspa.1924.0082

    Article  ADS  Google Scholar 

  37. Doye JPK, Miller MA, Wales DJ (1999) Evolution of the potential energy surface with size for Lennard-Jones clusters. J Chem Phys 111:8417–8428. doi:10.1063/1.480217

    Article  ADS  Google Scholar 

  38. Yang Q, To AC (2015) Multiresolution molecular mechanics: a unified and consistent framework for general finite element shape function. Comput Methods Appl Mech Eng 283:384–418. doi:10.1016/j.cma.2014.09.031

    Article  ADS  MathSciNet  Google Scholar 

  39. Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103. doi:10.1103/PhysRev.159.98

    Article  ADS  Google Scholar 

  40. Hairer E, Lubich C, Wanner G (2003) Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer 12:399–450. doi:10.1017/S096249290200144

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Stark JP (1976) Solid state diffusion. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

I am grateful to Prof. V. E. Olshanetsky and Ms. N. V. Bondarenko for their advice and assistance. I thank my son D. A. Nedolya for his invaluable assistance in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nedolya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nedolya, A.V. (2016). Conditions of Spontaneous Growth of Iron Subnanocluster: The Influence of Impurity Atoms. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_20

Download citation

Publish with us

Policies and ethics