Skip to main content
Log in

Nonlinear effects in gases in the Couette problem

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nonlinear processes of heat and mass transfer in a rarefied gas confined between two infinite parallel plates maintained at different temperatures and moving at a relative velocity are considered. The profiles of the gas macroscopic flow velocity, density, temperature, heat fluxes, and shear stress were calculated on the basis of kinetic equations by the discrete velocity method in a wide range of Knudsen numbers at different values of temperature difference between the plates and plate velocities. It was shown that under certain conditions, the direction of gas flow near the “hot” plate can change to the opposite. It was discovered that the longitudinal and normal components of heat flux at a certain temperature difference between the plates change their orientation to the opposite in transition and nearly free molecular regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Willis, Phys. Fluids 5, 127 (1962).

    Article  MATH  ADS  Google Scholar 

  2. E. P. Gross and S. Ziering, Phys. Fluids 2, 701 (1959).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Yu. I. Makeev, P. E. Suetin, and V. G. Chernyak, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 13, 141 (1978).

    Google Scholar 

  4. S. G. Skakun, P. E. Suetin, and V. G. Chernyak, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 325 (1971).

    Google Scholar 

  5. S. Misdanitis and D. Valougeorgis, in Proceedings of the Sixth International ASME Conference on Nanochannels, Microchannels, and Minichannels, Darmstadt, Germany, 2008 (ASME, Darmstadt, 2008).

  6. T. Ohwada, Phys. Fluids 8, 2153 (1996).

    Article  MATH  ADS  Google Scholar 

  7. D. C. Wadsworth, Phys. Fluids A 5, 1831 (1993).

    Article  ADS  Google Scholar 

  8. W. Marques, G. M. Kremer, and F. M. Sharipov, Continuum Mech. Thermodyn. 12, 379 (2000).

    Article  MATH  ADS  Google Scholar 

  9. G. Russo, L. Pareschi, S. Trazzi, A. Shevyrin, Ye. Bondar, and M. Ivanov, in Proceedings of the 24th International Symposium on Rarefied Gas Dynamics, Porto Giardino, Italy, 2004 (AIP Conf. Proc. 762, 577 (2005)).

    ADS  Google Scholar 

  10. M. Tij and A. Santos, Phys. Fluids 7, 2858 (1995).

    Article  MATH  ADS  Google Scholar 

  11. P.L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511(1954).

    Article  MATH  ADS  Google Scholar 

  12. E. M. Shakhov, Fluid Dyn. 3(5), 95 (1968).

    Article  Google Scholar 

  13. A. M. Bishaev and V. A. Rykov, Fluid Dyn. 15(3), 460 (1980).

    Article  MATH  Google Scholar 

  14. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  15. W.P. Teagan and G. S. Springer, Phys. Fluids 11, 497 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Chernyak.

Additional information

Original Russian Text © V.G. Chernyak, A.Ph. Polikarpov, 2010, published in Russian in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ-Fiziki, 2010, Vol. 137, No. 1, pp. 165–176.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyak, V.G., Polikarpov, A.P. Nonlinear effects in gases in the Couette problem. J. Exp. Theor. Phys. 110, 147–156 (2010). https://doi.org/10.1134/S1063776110010176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110010176

Keywords

Navigation