Skip to main content
Log in

Heat transfer in the cylindrical rarefied Couette flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The efficiency of the self-similar interpolation method is demonstrated with reference to the solution of the problem of heat transfer in a rarefied gas between two coaxial cylinders rotating relative one another. The analytical solution of the problem is compared with the results obtained by direct statistical simulation. The most interesting result is the energy flux nonmonotonicity and the reversal of its sign with variation in the Knudsen number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gluzman and V. I. Yukalov, “Unified Approach to Crossover Phenomena,” Phys. Rev. 58 (4), 4197 (1998).

    ADS  MathSciNet  Google Scholar 

  2. S. L. Gorelov, “Application of the Self-Similar InterpolationMethod to the Problems of Rarefied Gas Dynamics,” Prikl. Mat. Mekh. 69, 438 (2005).

    MathSciNet  Google Scholar 

  3. S. L. Gorelov, “Self-Similar Interpolation in Rarefied Gas Dynamics,” in: Rarefied Gas Dynamics. Proc. 25th Int. Symp., St.-Petersburg, 2007 (2007), p. 871.

    Google Scholar 

  4. S. L. Gorelov and Zeyar Soe, “Self-Similar Interpolation in the Problems of Rarefied Gas Dynamics,” Uch. Zap. TsAGI No. 5, 46 (2010).

    Google Scholar 

  5. M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York (1969).

    Book  Google Scholar 

  6. Yu. A. Koshmarov and Yu. A. Ryzhov, Applied Rarefied Gas Dynamics [in Russian], Mashinostroenie, Moscow (1977).

    Google Scholar 

  7. A. A. Abramov and A. V. Butkovskii, “Effects of Nonmonotonicity and Change of Sign of the Energy Flux in the Transient Regime for the Couette Problem with Heat Transfer,” Fluid Dynamics 45 (1), 147 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. V. G. Chernyak and A. F. Polikarpov, “Nonlinear Phenomena in Gases in the Couette Problem,” Zh. Eksp. Teor. Fiz. 137, 165 (2010).

    Google Scholar 

  9. L. Lees and Liu Chung Yen, “Kinetic-Theory Description of Conductive Heat Transfer from a Fine Wire,” Phys. Fluids 5, 1137 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  10. V. S. Galkin, “Cylindrical Couette Flow in a Rarefied Gas,” Inzh. Zh. 5, 553 (1965).

    Google Scholar 

  11. C. Cercignani, Mathematical Methods in Kinetic Theory, Springer, New York (1969).

    Book  MATH  Google Scholar 

  12. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford (1994).

    Google Scholar 

  13. G. A. Bird, Molecular Gas Dynamics, Clarendon Press, Oxford (1976).

    Google Scholar 

  14. S. L. Gorelov and S. V. Rusakov, “Physicochemical Model of Hypersonic Rarefied Gas Flow past Bodies,” Fluid Dynamics 37 (4), 624 (2002).

    Article  MATH  Google Scholar 

  15. V. P. Shidlovskii, Introduction to Rarefied Gas Dynamics [in Russian], Nauka, Moscow (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyong Van Tien.

Additional information

Original Russian Text © Vyong Van Tien, S.L. Gorelov, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2016, Vol. 51, No. 6, pp. 101–107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Tien, V., Gorelov, S.L. Heat transfer in the cylindrical rarefied Couette flow. Fluid Dyn 51, 814–820 (2016). https://doi.org/10.1134/S0015462816060120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462816060120

Keywords

Navigation