Skip to main content
Log in

Isotope effect in the model of strongly correlated electrons with the magnetic and phonon superconducting pairing mechanisms

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Peculiarities of the temperature isotope effect in a BCS-type theory describing the exchange and phonon mechanisms of Cooper pairing in a system of strongly correlated electrons are considered. The electron-phonon interaction constant is determined from the fitting of the calculated value of the isotope-effect index to the observed value with the parameters of La2 − x Sr x CuO4 obtained from ab initio calculations. The value of this constant indicates that the contribution from the traditional pairing mechanism to the superconducting state is of the same order of magnitude as the contribution from the magnetic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Maksimov and O. V. Dolgov, Usp. Fiz. Nauk 177(9), 983 (2007) [Phys.—Usp. 50 (9), 933 (2007)].

    Article  Google Scholar 

  2. E. G. Maksimov, Usp. Fiz. Nauk 170(10), 1033 (2000) [Phys.—Usp. 43 (10), 965 (2000)].

    Article  Google Scholar 

  3. P. W. Anderson, Science (Washington) 316, 1705 (2007).

    Article  Google Scholar 

  4. L. Pintsehovious, Phys. Status Solidi B 242, 30 (2005); M. L. Kulic and O. V. Dolgov, Phys. Stat. Sol. B 242, 151 (2005).

    Article  ADS  Google Scholar 

  5. N. Gedik, D.-S. Yang, G. Logvenov, I. Bozovic, and A. H. Zewail, Science (Washington) 316, 425 (2007).

    Article  ADS  Google Scholar 

  6. M. K. Crawford, W. E. Farneth, E. M. McCarronn, R. L. Harlow, and A. H. Moudden, Science (Washington) 250, 1390 (1990).

    Article  ADS  Google Scholar 

  7. J. P. Franck, S. Harker, and J. H. Brewer, Phys. Rev. Lett. 71, 283 (1993).

    Article  ADS  Google Scholar 

  8. G. M. Zhao, K. Conder, H. Keller, and K. A. Müller, J. Phys.: Condens. Matter 10, 9055 (1998).

    Article  ADS  Google Scholar 

  9. J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Magnetism of Itinerant Electrons (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  11. N. M. Plakida, L. Anton, S. Adam, and G. Adam, Zh. Éksp. Teor. Fiz. 124(2), 367 (2003) [JETP 97 (2), 331 (2003)].

    Google Scholar 

  12. S. Pathak, V. B. Shenoy, M. Randeria, and N. Trivedi, Phys. Rev. Lett. 102, 027 002 (2009).

    Article  Google Scholar 

  13. P. W. Anderson, Science (Washington) 235, 1196 (1987).

    Article  ADS  Google Scholar 

  14. F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond. Sci. Technol. 1, 36 (1988).

    Article  ADS  Google Scholar 

  15. P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, J. Phys.: Condens. Matter 16, R755 (2004).

    Article  ADS  Google Scholar 

  16. S. G. Ovchinnikov and I. S. Sandalov, Physica C (Amsterdam) 161, 607 (1989).

    ADS  Google Scholar 

  17. L. N. Bulaevskiĭ, E. L. Nagaev, and D. I. Khomskiĭ, Zh. Éksp. Teor. Fiz. 54(5), 1562 (1968) [Sov. Phys. JETP 27 (5), 836 (1968)].

    Google Scholar 

  18. K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C: Solid State Phys. 10, L271 (1977).

    Article  ADS  Google Scholar 

  19. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, Pis’ma Zh. Éksp. Teor. Fiz. 75(8), 450 (2002) [JETP Lett. 75 (8), 378 (2002)].

    Google Scholar 

  20. P. Prelovšek and A. Ramšak, Phys. Rev. B: Condens. Matter 72, 012510 (2005).

    ADS  Google Scholar 

  21. T. A. Maier, D. Poilblanc, and D. J. Scalapino, Phys. Rev. Lett. 100, 237001 (2008).

    Article  ADS  Google Scholar 

  22. T. Dahm, V. Hinkov, S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, J. Fink, B. Buchner, D. J. Scalapino, W. Hanke, and B. Keimer, Nat. Phys. 5, 217 (2009).

    Article  Google Scholar 

  23. S. G. Ovchinnikov and E. I. Shneĭder, Zh. Éksp. Teor. Fiz. 128(5), 974 (2005) [JETP 101 (5), 844 (2005)].

    Google Scholar 

  24. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum, New York, 1967; Nauka, Moscow, 1975).

    Google Scholar 

  25. E. I. Shneyder and S. G. Ovchinnikov, Pis’ma Zh. Éksp. Teor. Fiz. 83(9), 462 (2006) [JETP Lett. 83 (9), 394 (2006)].

    Google Scholar 

  26. N. M. Plakida, V. Yu. Yushankhai, and I. V. Stasyuk, Physica C (Amsterdam) 160, 80 (1989).

    ADS  Google Scholar 

  27. F. Giustino, M. L. Cohen, and S. G. Louie, Nature (London) 452, 975 (2008).

    Article  ADS  Google Scholar 

  28. N. Bulut and D. J. Scalapino, Phys. Rev. B: Condens. Matter 54, 14 971 (1996).

    Google Scholar 

  29. T. Dahm, D. Manske, D. Fay, and L. Tewordt, Phys. Rev. B: Condens. Matter 54, 12006 (1996).

    ADS  Google Scholar 

  30. P. Piekarz, J. Konior, and J. H. Jefferson, Phys. Rev. B: Condens. Matter 59, 14697 (1999).

    ADS  Google Scholar 

  31. C. Honerkamp, Henry C. Fu, and Dung-Hai Lee, Phys. Rev. B: Condens. Matter 75, 014503 (2007).

    ADS  Google Scholar 

  32. R. Khasanov, A. Shengelaya, E. Morenzoni, M. Angst, K. Conder, I. M. Savic, D. Lampakis, E. Liarokapis, A. Tatsi, and H. Keller, Phys. Rev. B: Condens. Matter 68, 220506(R) (2003).

    ADS  Google Scholar 

  33. A. R. Bishop, A. Bussmann-Holder, O. V. Dolgov, A. Furrer, H. Kamimura, H. Keller, R. Khasanov, R. K. Kremer, D. Manske, K. A. Muller, and A. Simon, J. Supercond. Novel Magn. 20, 393 (2007).

    Article  Google Scholar 

  34. V. V. Val’kov and D. M. Dzebisashvili, Zh. Éksp. Teor. Fiz. 127(3), 686 (2005) [JETP 100 (3), 608 (2005)].

    Google Scholar 

  35. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, I. A. Nekrasov, Z. V. Pchelkina, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 72, 165 104 (2005).

    Google Scholar 

  36. A. F. Barabanov and V. M. Berezovskiĭ, Zh. Éksp. Teor. Fiz. 106(4), 1156 (1994) [JETP 79 (4), 627 (1994)].

    Google Scholar 

  37. M. M. Korshunov and S. G. Ovchinnikov, Eur. Phys. J. B 57, 271 (2007).

    Article  ADS  Google Scholar 

  38. A. G. Sun, D. A. Gajewski, M. B. Maple, and R. C. Dynes, Phys. Rev. Lett. 72, 2267 (1994).

    Article  ADS  Google Scholar 

  39. R. Kleiner, A. S. Katz, A. G. Sun, R. Summer, D. A. Gajewski, S. H. Han, S. I. Woods, E. Dantsker, B. Chen, K. Char, M. B. Maple, R. C. Dynes, and J. Clarke, Phys. Rev. Lett. 76, 2161 (1996).

    Article  ADS  Google Scholar 

  40. Qiang Li, Y. N. Tsay, M. Suenaga, R. A. Klemm, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 83, 4160 (1999).

    Article  ADS  Google Scholar 

  41. R. A. Klemm, Philos. Mag. 85, 801 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Shneyder.

Additional information

Original Russian Text © E.I. Shneyder, S.G. Ovchinnikov, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 136, No. 6, pp. 1177–1182.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shneyder, E.I., Ovchinnikov, S.G. Isotope effect in the model of strongly correlated electrons with the magnetic and phonon superconducting pairing mechanisms. J. Exp. Theor. Phys. 109, 1017–1021 (2009). https://doi.org/10.1134/S1063776109120139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109120139

Keywords

Navigation