Skip to main content
Log in

A nonlinear theory for the motion of hydrodynamic discontinuity surfaces

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The complete system of hydrodynamic equations that describe the free surface of an inviscid fluid, a tangential discontinuity, and the development of the hydrodynamic instability of a reaction front is reduced to a closed system of surface equations using Lagrangian variables, special integrals of motion, and their analogues. The vorticity is shown to play a fundamental role in the pattern of motion of hydrodynamic discontinuities, imparting a differential form to the equations. In the isentropic approximation, it is demonstrated how to take into account the fluid density oscillations caused by this motion. The derived system of equations is consistent with the previously known analytical solutions obtained in special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).

    Google Scholar 

  2. F. A. Williams, Combustion Theory (Benjamin, Menlo Park, CA, United States, 1985).

    Google Scholar 

  3. E. Ott, Phys. Rev. Lett. 29, 1429 (1972).

    Article  ADS  Google Scholar 

  4. D. L. Book, E. Ott, and A. L. Sulton, Phys. Fluids 17, 676 (1974).

    Article  MATH  ADS  Google Scholar 

  5. A. P. Napartovich and A. N. Starostin, Chemistry of Plasma (Atomizdat, Moscow, 1979), Vol. 6 [in Russian].

    Google Scholar 

  6. A. V. Nedospasov and V. D. Khait, Oscillations and Instabilities of Low-Temperature Plasma (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  7. E. P. Velikhov, A. S. Kovalev, and A. T. Rakhimov, Physical Phenomena in Gas-Discharge Plasma (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  8. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Consultants Bureau, New York, 1985).

    Google Scholar 

  9. V. V. Bychkov, Phys. Fluids 10, 2091 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. G. I. Sivashinsky, Acta Astron. 4, 1177 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Frankel, Phys. Fluids A 2, 1879 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. V. Bychkov, M. Zaytsev, and V. Akkerman, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 026 312 (2003).

  13. A. D. Polyanin and V. F. Zaĭtsev, A Handbook on Nonlinear Equations of Mathematical Physics: Exact Solutions (Fizmatlit, Moscow, 2002) [in Russian].

    Book  Google Scholar 

  14. B. E. Pobedrya, Lectures on Tensor Analysis (Moscow State University, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  15. A. A. Samarskiĭ and Yu. P. Popov, Difference Methods for Solving Problems of Gas Dynamics (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  16. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1966; Dover, New York, 1990).

    Google Scholar 

  17. J. A. Schouten, Tensor Analysis for Physicists (Clarendon, Oxford, 1954; Nauka, Moscow, 1965).

    MATH  Google Scholar 

  18. M. Matalon and B. J. Matkowsky, Combust. Sci. Technol. 34, 295 (1983).

    Article  Google Scholar 

  19. O. Yu. Travnikov, V. V. Bychkov, and M. A. Liberman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 61, 468 (2000).

    Google Scholar 

  20. S. Kadowaki, Phys. Fluids 11, 3426 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. V. V. Bychkov, S. M. Golberg, M. A. Liberman, and L. E. Eriksson, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, 3713 (1996).

    Google Scholar 

  22. M. Zaytsev and V. Bychkov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 66, 026 310 (2002).

  23. G. V. Korenev, Tensor Calculus (Moscow Institute of Physics and Technology, Moscow, 1996) [in Russian].

    Google Scholar 

  24. K. Bechtold and M. Matalon, Combust. Flame 67, 77 (1987).

    Article  Google Scholar 

  25. J. H. M. ten Thije Boonkkamp, L. P. H. de Goey, J. A. van Oijen, A. G. Class, and Y. Bronner, Combust. Sci. Technol. 180, 1449 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Zaytsev.

Additional information

Original Russian Text © M.L. Zaytsev, V.B. Akkerman, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 4, pp. 800–819.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaytsev, M.L., Akkerman, V.B. A nonlinear theory for the motion of hydrodynamic discontinuity surfaces. J. Exp. Theor. Phys. 108, 699–717 (2009). https://doi.org/10.1134/S1063776109040177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109040177

PACS numbers

Navigation