Skip to main content
Log in

Molecular dynamics of liquid lead near its melting point

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The molecular dynamics of liquid lead is simulated at T = 613 K using the following three models of an interparticle interaction potential: the Dzugutov pair potential and two multiparticle potentials (the “glue” potential and the Gupta potential). One of the purposes of this work is to determine the optimal model potential of the interatomic interaction in liquid lead. The calculated structural static and dynamic characteristics are compared with the experimental data on X-ray and neutron scattering. On the whole, all three model potentials adequately reproduce the experimental data. The calculations using the Dzugutov pair potential are found to reproduce the structural properties and dynamics of liquid lead on the nanoscale best of all. The role of a multiparticle contribution to the glue and Gupta potentials is studied, and its effect on the dynamic properties of liquid lead in nanoregions is revealed. In particular, the neglect of this contribution is shown to noticeably decrease the acoustic-mode frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    MATH  Google Scholar 

  2. B. Smit and D. Frenkel, Understanding Molecular Simulations (Academic, New York, 1996).

    Google Scholar 

  3. R. Kumaravadivel and R. Evans, J. Phys. C: Solid State Phys. 9, 3877 (1976).

    Article  ADS  Google Scholar 

  4. M. Hasegawa and W. H. Young, J. Phys. F: Met. Phys. 8, L81 (1978).

    Article  ADS  Google Scholar 

  5. S. K. Mitra, J. Phys. C: Solid State Phys. 11, 3551 (1978).

    Article  ADS  Google Scholar 

  6. I. Yokoyama and S. Ono, J. Phys. F: Met. Phys. 15, 1215 (1985).

    Article  ADS  Google Scholar 

  7. M. W. C. Dharma-Wardana, G. C. Aers, P. W. M. Jacobs, Z. A. Rycerz, and K.-E. Larsson, Phys. Rev. A: At., Mol., Opt. Phys. 37, 4500 (1988).

    ADS  Google Scholar 

  8. W. Jank and J. Hafner, Phys. Rev. B: Condens. Matter 41, 1497 (1990).

    ADS  Google Scholar 

  9. K.-E. Larsson, W. Gudowski, and M. Dzugutov, Phys. Rev. A: At., Mol., Opt. Phys. 46, 1132 (1992).

    ADS  Google Scholar 

  10. W. Gudowski, M. Dzugutov, and K.-E. Larsson, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 47, 1693 (1993).

    Google Scholar 

  11. M. Dzugutov, Phys. Rev. A: At., Mol., Opt. Phys. 40, 5434 (1989).

    ADS  Google Scholar 

  12. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, and P. Hänggi, J. Phys.: Condens. Matter 19, 046 209 (2007).

    Google Scholar 

  13. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hänggi, Zh. Éksp. Teor. Fiz. 130(6), 974 (2006) [JETP 103 (6), 841 (2006)].

    Google Scholar 

  14. J. R. D. Copley and S. W. Lovesey, Rep. Prog. Phys. 38, 461 (1975).

    Article  ADS  Google Scholar 

  15. T. Scopigno, G. Ruocco, and F. Sette, Rev. Mod. Phys. 77, 881 (2005).

    Article  ADS  Google Scholar 

  16. P. A. Egelstaff, Acta Crystallogr. 7, 673 (1954).

    Google Scholar 

  17. B. N. Brockhouse, Phys. Rev. 98, 1171 (1955).

    Article  Google Scholar 

  18. B. N. Brockhouse and N. K. Pope, Phys. Rev. Lett. 3, 259 (1959).

    Article  ADS  Google Scholar 

  19. H. Palevsky, Inelastic Scattering of Neutrons in Solids and Liquids (International Atomic Energy Agency, Vienna, 1961).

    Google Scholar 

  20. P. D. Randolph and K. S. Singwi, Phys. Rev. 152(1), 99 (1966).

    Article  ADS  Google Scholar 

  21. P. D. Randolph, Phys. Rev. Lett. 20, 531 (1968).

    Article  ADS  Google Scholar 

  22. S. J. Cocking and P. A. Egelstaff, J. Phys. C: Solid State Phys. 1, 507 (1968).

    Article  ADS  Google Scholar 

  23. B. Dorner, T. Plesser, and H. Stiller, Physica (Amsterdam) 31, 1537 (1965).

    Article  ADS  Google Scholar 

  24. O. Söderström, J. R. D. Copley, J.-B. Suck, and B. Dorner, J. Phys. F: Met. Phys. 10, L151 (1980).

    Article  Google Scholar 

  25. O. Söderström, Phys. Rev. A: At., Mol., Opt. Phys. 23(2), 785 (1981).

    Google Scholar 

  26. O. Söderström, U. Dahlborg, and M. Davidovi, Phys. Rev. A: At., Mol., Opt. Phys. 27, 470 (1983).

    ADS  Google Scholar 

  27. M. Goda and Sh. Yoshioki, Prog. Theor. Phys. 53, 1839 (1975).

    Article  ADS  Google Scholar 

  28. M. Hasegawa and M. Watabe, J. Phys. Soc. Jpn. 32, 14 (1972).

    Article  ADS  Google Scholar 

  29. M. Dzugutov, K. E. Larsson, and I. Ebbsjö, Phys. Rev. A: At., Mol., Opt. Phys. 38, 3609 (1988).

    ADS  Google Scholar 

  30. H. S. Lim, C. K. Ong, and F. Ercolessi, Surf. Sci. 269/270, 1109 (1992).

    Article  Google Scholar 

  31. F. Cleri and V. Rosato, Phys. Rev. B: Condens. Matter 48, 22 (1993).

    ADS  Google Scholar 

  32. L. I. Komarov and I. Z. Fisher, Zh. Éksp. Teor. Fiz. 43, 1927 (1962) [Sov. Phys. JETP 16, 1358 (1962)].

    Google Scholar 

  33. I. L. Fabelinskii, Molecular Scattering of Light (Nauka, Moscow, 1965; Plenum, New York, 1968).

    Google Scholar 

  34. A. V. Mokshin and R. M. Yulmetyev, Microscopic Dynamics of Simple Liquids (Tsentr Innovatsionnykh Tekhnologioe, Kazan, 2006) [in Russian].

    Google Scholar 

  35. V. F. Turchin, Slow Neutrons (Gosatomizdat, Moscow, 1963; Israel Program for Scientific Translations, Jerusalem, 1965).

    Google Scholar 

  36. A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, Phys. Rev. Lett. 95, 200 601 (2005).

    Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Mechanics of Continuous Media (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  38. N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics (Gostekhizdat, Moscow, 1946; Interscience, New York, 1962)

    Google Scholar 

  39. R. M. Yulmetyev, A. V. Mokshin, P. Hänggi, and V. Yu. Shurygin, Pis’ma Zh. Éksp. Teor. Fiz. 76(3), 181 (2002) [JETP Lett. 76 (3), 147 (2002)].

    Google Scholar 

  40. W. C. Swope, H. C. Anderson, P. H. Berens, and K. R. Wilson, J. Chem. Phys. 76, 637 (1982).

    Article  ADS  Google Scholar 

  41. Ya. I. Frenkel’, Introduction to the Theory of Metals (Nauka, Leningrad, 1972) [in Russian].

    Google Scholar 

  42. R. A. Johnson and D. J. Oh, J. Mater. Res. 4, 1195 (1989).

    Article  ADS  Google Scholar 

  43. J. P. K. Doye, Comput. Mater. Sci. 35, 227 (2006).

    Article  Google Scholar 

  44. D. N. Zubarev, V. G. Morozov, and G. Roepke, Statistical Mechanics of Nonequilibrium Processes (Akademy, Berlin, 1996; Fizmatlit, Moscow, 2002).

    MATH  Google Scholar 

  45. Amorphous Solids and the Liquid State, Ed. by N. H. March, R. A. Street, and M. Tosi (Plenum, New York, 1985).

    Google Scholar 

  46. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  47. IAMP database of SCM-LIQ, Tohoku University. URL: http://www.iamp.tohoku.ac.jp/database/scm.

  48. M. M. G. Alemany, R. C. Longo, L. J. Gallego, D. J. Gonzalez, L. E. Gonzalez, M. L. Tiago, and J. R. Chelikowsky, Phys. Rev. B: Condens. Matter 76, 214 203 (2007).

    Google Scholar 

  49. H. R. Wendt and F. F. Abraham, Phys. Rev. Lett. 41, 1244 (1978).

    Article  ADS  Google Scholar 

  50. H. Tanaka, Phys. Rev. Lett. 80, 5750 (1998).

    Article  ADS  Google Scholar 

  51. Zh. Yan, S. Buldyrev, P. Kumar, N. Giovambattista, P. G. Debenedetti, and H. E. Stanley, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 76, 051 201 (2007).

  52. R. B. Gordon, Acta Metall. 7, 1 (1959).

    Article  Google Scholar 

  53. J.-D. Chai, D. Stroud, J. Hafner, and G. Kresse, Phys. Rev. B: Condens. Matter 67, 104 205 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mokshin.

Additional information

Original Russian Text © R.M. Khusnutdinov, A.V. Mokshin, R.M. Yul’met’ev, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 3, pp. 477–489.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khusnutdinov, R.M., Mokshin, A.V. & Yul’met’ev, R.M. Molecular dynamics of liquid lead near its melting point. J. Exp. Theor. Phys. 108, 417–427 (2009). https://doi.org/10.1134/S1063776109030066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109030066

PACS numbers

Navigation