Skip to main content
Log in

Thermal conductivity of polycrystalline CVD diamond: Experiment and theory

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature dependences of thermal conductivity κ of polycrystalline CVD diamond are measured in the temperature range from 5 to 410 K. The diamond sample is annealed at temperatures sequentially increasing from 1550 to 1690°C to modify the properties of the intercrystallite contacts in it. As a result of annealing, the thermal conductivity decreases strongly at temperatures below 45 K, and its temperature dependence changes from approximately quadratic to cubic. At T > 45 K, the thermal conductivity remains almost unchanged upon annealing at temperatures up to 1650°C and decreases substantially at higher annealing temperatures. The experimental data are analyzed in terms of the Callaway theory of thermal conductivity [9], which takes into account the specific role of normal phonon-phonon scattering processes. The thermal conductivity is calculated with allowance for three-phonon scattering processes, the diffuse scattering by sample boundaries, the scattering by point and extended defects, the specular scattering by crystallite boundaries, and the scattering by intercrystallite contacts. A model that reproduces the main specific features of the thermal conductivity of CVD diamond is proposed. The phonon scattering by intercrystallite contacts plays a key role in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Graebner, S. Jin, G. W. Kammlott, et al., Nature (London) 359, 401 (1992).

    Article  ADS  Google Scholar 

  2. J. E. Graebner, M. E. Reiss, L. Seibles, et al., Phys. Rev. B: Condens. Matter 50, 3702 (1994).

    ADS  Google Scholar 

  3. J. E. Graebner, J. A. Mucha, and F. A. Baiocchi, Diamond Relat. Mater. 5, 682 (1996).

    Article  Google Scholar 

  4. D. J. Twitchen, C. S. J. Pickles, S. E. Coe, et al., Diamond Relat. Matter. 10, 731 (2001).

    Article  Google Scholar 

  5. V. I. Nepsha, N. F. Reshetnikov, Yu. A. Klyuev, et al., Dokl. Akad. Nauk SSSR 283(1–3), 374 (1985) [Sov. Phys. Dokl. 30 (7), 547 (1985)].

    Google Scholar 

  6. D. T. Morelli, C. P. Beets, and T. A. Perry, J. Appl. Phys. 64, 3063 (1988).

    Article  ADS  Google Scholar 

  7. D. T. Morelli, T. M. Hartnett, and C. J. Robinson, Appl. Phys. Lett. 59, 2112 (1991).

    Article  ADS  Google Scholar 

  8. D. T. Morelli, C. Uher, and C. J. Robinson, Appl. Phys. Lett. 62, 1085 (1993).

    Article  ADS  Google Scholar 

  9. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  ADS  MATH  Google Scholar 

  10. T. R. Anthony, W. F. Banholzer, J. F. Fleischer, et al., Phys. Rev. B: Condens. Matter 42, 1104 (1990).

    ADS  Google Scholar 

  11. L. Wei, P. K. Kuo, R. L. Thomas, et al., Phys. Rev. Lett. 70, 3764 (1993).

    Article  ADS  Google Scholar 

  12. V. I. Nepsha, V. R. Grinberg, Yu. A. Klyuev, et al., Dokl. Akad. Nauk SSSR 317, 96 (1991) [Sov. Phys. Dokl. 36 (3), 228 (1991)].

    Google Scholar 

  13. R. Berman, Phys. Rev. B: Condens. Matter 45, 5726 (1992).

    ADS  Google Scholar 

  14. R. Berman, J. Phys. Chem. Solids 59, 1229 (1998).

    Article  ADS  Google Scholar 

  15. V. I. Nepsha, V. R. Grinberg, A. M. Naletov, et al., Sverkhtverd. Mater., No. 6, 21 (1990).

  16. V. I. Nepsha, V. R. Grinberg, Y. A. Klyuev, et al., Surf. Coat. Technol. 47, 388 (1991).

    Article  Google Scholar 

  17. J. E. Graebner and J. A. Herb, Diamond Films Technol. 1, 155 (1992).

    Google Scholar 

  18. S. Barman and G. P. Srivastava, Phys. Rev. B: Condens. Matter 73, 073301 (2006).

    Google Scholar 

  19. J. E. Graebner, S. Jin, J. A. Herb, and C. F. Gardinier, J. Appl. Phys. 76, 1552 (1994).

    Article  ADS  Google Scholar 

  20. P. G. Klemens, Int. J. Thermophys. 15, 1345 (1994).

    Article  Google Scholar 

  21. A. V. Khomich, V. G. Ralchenko, A. V. Vlasov, et al., Diamond Relat. Mater. 10, 546 (2001).

    Article  Google Scholar 

  22. L. Nistor, V. Ralchenko, I. Vlasov, et al., Phys. Status Solidi A 186, 207 (2001).

    Article  ADS  Google Scholar 

  23. V. Ralchenko, L. Nistor, E. Pleuler, et al., Diamond Relat. Mater. 12, 1964 (2003).

    Article  Google Scholar 

  24. D. F. Talbot-Ponsonby, M. E. Newton, J. M. Baker, et al., Phys. Rev. B: Condens. Matter 57, 2302 (1998).

    ADS  Google Scholar 

  25. S. V. Nistor, M. Stefan, V. Ralchenko, et al., J. Appl. Phys. 87, 8741 (2000).

    Article  ADS  Google Scholar 

  26. P. G. Klemens, Proc. Phys. Soc., London, Sect. A 68, 1113 (1955).

    Article  ADS  MATH  Google Scholar 

  27. A. K. McCurdy, H. J. Maris, and C. Elbaum, Phys. Rev. B: Condens. Matter 2, 4077 (1970).

    ADS  Google Scholar 

  28. A. K. McCurdy, Phys. Rev. B: Condens. Matter 26, 6971 (1982).

    ADS  Google Scholar 

  29. J. W. Schwartz and C. T. Walker, Phys. Rev. 155, 969 (1967).

    Article  ADS  Google Scholar 

  30. R. Berman, E. L. Foster, and J. M. Ziman, Proc. R. Soc. London, Ser. A 231, 130 (1955).

    Article  ADS  Google Scholar 

  31. J. M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960; Inostrannaya Literatura, Moscow, 1962).

    MATH  Google Scholar 

  32. S. B. Soffer, J. Appl. Phys. 38, 1710 (1967).

    Article  ADS  Google Scholar 

  33. R. Berman, F. E. Simon, and J. M. Ziman, Proc. R. Soc. London, Ser. A 220, 171 (1953).

    Article  ADS  Google Scholar 

  34. H. Holloway, K. C. Hass, M. A. Tamor, et al., Phys. Rev. B: Condens. Matter 44, 7123 (1991).

    ADS  Google Scholar 

  35. A. R. Lang and G. Pang, Philos. Trans. R. Soc. London, Ser. A 356, 1397 (1998).

    Article  ADS  Google Scholar 

  36. R. Vogelgesang, A. K. Ramdas, S. Rodriguez, et al., Phys. Rev. B: Condens. Matter 54, 3989 (1996).

    ADS  Google Scholar 

  37. E. S. Zouboulis, M. Grimsditch, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B: Condens. Matter 57, 2889 (1998).

    ADS  Google Scholar 

  38. J. Hartmann, M. Costello, and M. Reichling, Phys. Rev. Lett. 80, 117 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Inyushkin.

Additional information

Original Russian Text © A.V. Inyushkin, A.N. Taldenkov, V.G. Ral’chenko, V.I. Konov, A.V. Khomich, R.A. Khmel’nitskiĭ, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 3, pp. 544–556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inyushkin, A.V., Taldenkov, A.N., Ral’chenko, V.G. et al. Thermal conductivity of polycrystalline CVD diamond: Experiment and theory. J. Exp. Theor. Phys. 107, 462–472 (2008). https://doi.org/10.1134/S1063776108090136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108090136

PACS numbers

Navigation