Skip to main content
Log in

Quantum teleportation through an entangled state composed of displaced vacuum and single-photon states

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, G. Brassard, C. Crepeau, et al., Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Bouwmeester, J. W. Pan, K. Mattle, et al., Nature 390, 575 (1997).

    Article  ADS  Google Scholar 

  3. A. Furusawa, J. L. Sorensen, S. L. Braunstien, et al., Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  4. E. Schrödinger, Naturwissenschaften 23, 807 (1935).

    Article  ADS  Google Scholar 

  5. X. Wang, Phys. Rev. A 64, 022302 (2001); S. J. van Enk and O. Hirota, Phys. Rev. A 64, 022313 (2001); S. J. van Enk, Phys. Rev. A 67, 022318 (2003); H. Jeong, M. S. Kim, and J. Lee, Phys. Rev. A 64, 052308 (2001).

  6. P. T. Cochrane, G. J. Milburn, and W. J. Munro, Phys. Rev. A 59, 2631 (1999).

    Article  ADS  Google Scholar 

  7. H. Jeong and M. S. Kim, Phys. Rev. A 65, 042305 (2002); T. C. Ralph, A. Gilchrist, G. J. Milburn, et al., Phys. Rev. A 68, 042319 (2003).

  8. B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986); R. W. Boyd, J. Mod. Opt. 46, 367 (1999); A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, Phys. Rev. A 70, 020101(R) (2004); J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000).

    Article  ADS  Google Scholar 

  9. M. Boiteux and A. Levelut, J. Phys. A 6, 589 (1973).

    Article  ADS  Google Scholar 

  10. S. M. Roy and V. Singh, Phys. Rev. D 25, 3413 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  11. F. A. M. de Oliveira, M. S. Kim, P. L. Knight, and V. Buzek, Phys. Rev. A 41, 2645 (1990).

    Article  ADS  Google Scholar 

  12. D. Dakna, T. Anhut, T. Opatrny, et al., Phys. Rev. A 55, 3184 (1997).

    Article  ADS  Google Scholar 

  13. M. Dakna, L. Knöll, and D.-G. Welsch, Opt. Commun. 145, 309 (1998).

    Article  ADS  Google Scholar 

  14. M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, Phys. Rev. A 59, 1658 (1999).

    Article  ADS  Google Scholar 

  15. S. A. Podoshvedov and J. Kim, Phys. Rev. A 74, 033810 (2006).

    Google Scholar 

  16. S. A. Podoshvedov and J. Kim, Phys. Rev. A 75, 032346 (2007).

    Google Scholar 

  17. G. S. Agrawal and K. Tara, Phys. Rev. A 43, 492 (1991).

    Article  ADS  Google Scholar 

  18. A. Zavatta, S. Viciani, and M. Bellini, Science 306, 660 (2004).

    Article  ADS  Google Scholar 

  19. S. A. Podoshvedov, JETP 102, 537 (2006); JETP 104, 545 (2007).

    Article  ADS  Google Scholar 

  20. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    MATH  Google Scholar 

  21. S. Takeuchi, Y. Yamanoto, and H. H. Hogue, Appl. Phys. Lett. 74, 1063 (1999).

    Article  ADS  Google Scholar 

  22. K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys. Rev. Lett. 88, 042319 (2003).

    Google Scholar 

  23. D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett. 81, 1604 (1998); M. Koniorczyk, Z. Kurucz, A. Gabris, and J. Janszky, Phys. Rev. A 62, 013802 (2000).

    Article  ADS  Google Scholar 

  24. S. A. Babichev, B. Brezger, and A. I. Lvovsky, Phys. Rev. Lett. 92, 047903 (2004).

    Google Scholar 

  25. R. A. Campos, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 40, 1371 (1989).

    Article  ADS  Google Scholar 

  26. A. J. Leggett and A. Carg, Phys. Rev. Lett. 54, 857 (1985).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Podoshvedov.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podoshvedov, S.A. Quantum teleportation through an entangled state composed of displaced vacuum and single-photon states. J. Exp. Theor. Phys. 106, 435–441 (2008). https://doi.org/10.1134/S1063776108030035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776108030035

PACS numbers

Navigation