Skip to main content
Log in

Teleportation two-qubit state by using two different protocols

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this contribution, two versions of teleportation protocol are considered, based on either using a single or two copies of entangled atom-field state, respectively. It is shown that, by using the first version, the fidelity of the teleported state as well as the amount of quantum Fisher information, that contains in the teleported state, are much better than using the second version. In general, one may increases the fidelity of teleported information by increasing the mean photon number and decreasing the detuning parameter. The fidelity of teleporting classical information is much better than teleporting quantum information. Moreover, teleportating classical information that initially encoded in an exited states is much better than that encodes in the ground states. However, the teleported Fisher information that initially encoded in a ground state is much larger than those initially encoded in entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  • Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  • El Allati, A., Metwally, N., Hassouni, Y.: Transfer information remotely via noise entangled coherent channels. Opt. Commun. 284, 519–526 (2011)

    Article  ADS  Google Scholar 

  • El Allati, A., El Baz, M.: Quantum key distribution using optical coherent states via amplitude damping. Opt. Quantum Electron. 47, 1035–1046 (2015)

    Article  Google Scholar 

  • El Anouz, K., El Allati, A., Metwally, N., Mourabit, T.: Estimating the teleported initial parameters of a single and two-qubit systems. Appl. Phys. B 125, 11–15 (2019)

    Article  ADS  Google Scholar 

  • Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401–010405 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  • Herbert, N.: FLASH—a superluminal communicator based upon a new kind of quantum measurement. Found. Phys. 12, 1171–1179 (1982)

    Article  ADS  Google Scholar 

  • Ma, J., Huang, Y.-X., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channel. Phys. Rev. A. 84, 022302–022309 (2011)

    Article  ADS  Google Scholar 

  • Metwally, N.: Fisher information of accelerated two-qubit systems. Int. J. Mod. Phys. B 32, 1850050–1850065 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Metwally, N., Hassan, S.: Estimation of pulsed driven qubit parameters via quantum Fisher information. Laser Phys. Lett. 14, 115204–115212 (2017)

    Article  ADS  Google Scholar 

  • Metwally, N., Abdelaty, A., Obada, A.-S.F.: Quantum teleportation via entangled states generated by the Jaynes–Cummings model. Chaos Solitons Fractals 22, 529–535 (2004)

    Article  ADS  Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Ortigoso, J.: Twelve years before the quantum no-cloning theorem. Am. J. Phys. 86, 201–205 (2018)

    Article  ADS  Google Scholar 

  • Ozaydin, F.: Quantum Fisher information of W States in decoherence channels. Phys. Lett. A 378, 3161–3164 (2014)

    Article  ADS  Google Scholar 

  • Park, J.L.: The concept of transition in quantum mechanics. Found. Phys. 1, 23–33 (1970)

    Article  ADS  Google Scholar 

  • Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 23, 844–849 (1935)

    Article  ADS  Google Scholar 

  • Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  • Zheng, Q., Uao, Y., Li, Y.: Optimal quantum channel estimation of two interacting qubit subject to decoherence. Eur. Phys. J. D 68, 170–177 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K. EL ANOUZ acknowledges financial support for this research from the “Centre National pour la Recherche Scientique et Technique” CNRST, Morocco. A. E. A. acknowledges the hospitality of the Abdus Salam International Center for Theoretical Physics (Trieste, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Allati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients \(\alpha _{i}\) (\(i=0,\ldots ,5\)) are obtained from Eq. (4) as

$$\begin{aligned} \alpha _{1}&= {} \frac{P_{n-1}^{2}}{{\mathcal {N}}}\frac{n}{\delta ^2+n}\sin ^{2}(\tau \sqrt{\delta ^2+n}), \nonumber \\ \alpha _{2}= &\, {} \frac{P_{n}^{2}}{{\mathcal {N}}}\Big [\cos ^{2}(\tau \sqrt{\delta ^2+(n+1)})+ \frac{\delta ^{2}}{\delta ^2+(n+1)}\sin ^{2}(\tau \sqrt{\delta ^2+(n+1)})\Big ], \nonumber \\ \alpha _{3}= &\, {} i\frac{P_{n}^{2}\sqrt{n+1}e^{-i\delta \tau }}{{\mathcal {N}} \sqrt{\delta ^2+(n+1)}}\sin (\tau \sqrt{\delta ^2+(n+1)}) \Bigl [\cos (\tau \sqrt{\delta ^2+(n+1)}) \nonumber \\&-\,i\frac{\delta \sin (\tau \sqrt{\delta ^2+(n+1)})}{\sqrt{\delta ^2+(n+1)}}\Bigr ],\nonumber \\ \alpha _{4}= &\, {} \frac{P_{n}^{2}}{{\mathcal {N}}}\frac{(n+1)}{\delta ^2+(n+1)}\sin ^{2}(\tau \sqrt{\delta ^2+(n+1)}),\nonumber \\ \alpha _{5}= &\, {} \frac{P_{n+1}^{2}}{{\mathcal {N}}}\Bigl [\cos ^{2}(\tau \sqrt{\delta ^2+(n+1)})+ \frac{\delta ^2}{\delta ^2+(n+1)}\sin ^{2}(\tau \sqrt{\delta ^2+(n+1)})\Bigr ], \end{aligned}$$
(17)

where \(\delta\) is the dimentionless detuning and the normalization of the state \({\mathcal {N}}\) is given by,

$$\begin{aligned} {\mathcal {N}}&= {} P_{n}^{2}+ \Bigl [\frac{n}{\delta ^2+n}\sin ^{2}(\tau \sqrt{\delta ^2+n})\Bigr ]P_{n-1}^2\nonumber \\&+\,\Bigl [\cos ^{2}(\tau \sqrt{\delta ^2+(n+1)})+\frac{\delta ^2}{\delta ^2+(n+1)}\sin ^{2}(\tau \sqrt{\delta ^2+(n+1)})\Bigr ]P_{n+1}^{2}. \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Anouz, K., El Allati, A. & Metwally, N. Teleportation two-qubit state by using two different protocols. Opt Quant Electron 51, 203 (2019). https://doi.org/10.1007/s11082-019-1904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1904-y

Keywords

Navigation